Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup
- PMID: 37498259
- DOI: 10.1016/j.jacr.2023.06.003
Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup
Abstract
In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children.
Copyright © 2023 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Similar articles
-
Bending the Artificial Intelligence Curve for Radiology: Informatics Tools From ACR and RSNA.J Am Coll Radiol. 2019 Oct;16(10):1464-1470. doi: 10.1016/j.jacr.2019.06.009. Epub 2019 Jul 15. J Am Coll Radiol. 2019. PMID: 31319078 Review.
-
Artificial intelligence and medical imaging 2018: French Radiology Community white paper.Diagn Interv Imaging. 2018 Nov;99(11):727-742. doi: 10.1016/j.diii.2018.10.003. Epub 2018 Nov 22. Diagn Interv Imaging. 2018. PMID: 30470627 Review.
-
Artificial intelligence in radiology: the ecosystem essential to improving patient care.Clin Imaging. 2020 Jan;59(1):A3-A6. doi: 10.1016/j.clinimag.2019.08.001. Epub 2019 Aug 31. Clin Imaging. 2020. PMID: 31481284
-
Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.Can Assoc Radiol J. 2018 May;69(2):120-135. doi: 10.1016/j.carj.2018.02.002. Epub 2018 Apr 11. Can Assoc Radiol J. 2018. PMID: 29655580 Review.
-
Artificial Intelligence in Radiology Residency Training.Semin Musculoskelet Radiol. 2020 Feb;24(1):74-80. doi: 10.1055/s-0039-3400270. Epub 2020 Jan 28. Semin Musculoskelet Radiol. 2020. PMID: 31991454 Review.
Cited by
-
Evaluation of T2W FLAIR MR image quality using artificial intelligence image reconstruction techniques in the pediatric brain.Pediatr Radiol. 2024 Jul;54(8):1337-1343. doi: 10.1007/s00247-024-05968-8. Epub 2024 Jun 18. Pediatr Radiol. 2024. PMID: 38890153 Free PMC article.
-
Optimizing adult-oriented artificial intelligence for pediatric chest radiographs by adjusting operating points.Sci Rep. 2024 Dec 28;14(1):31329. doi: 10.1038/s41598-024-82775-z. Sci Rep. 2024. PMID: 39732934 Free PMC article.
-
Deep learning for pediatric chest x-ray diagnosis: Repurposing a commercial tool developed for adults.PLoS One. 2025 Jul 24;20(7):e0328295. doi: 10.1371/journal.pone.0328295. eCollection 2025. PLoS One. 2025. PMID: 40705715 Free PMC article.
-
Reference Range of Quantitative MRI Metrics Corrected T1 and Liver Fat Content in Children and Young Adults: Pooled Participant Analysis.Children (Basel). 2024 Oct 12;11(10):1230. doi: 10.3390/children11101230. Children (Basel). 2024. PMID: 39457195 Free PMC article.
-
Artificial intelligence (AI) in radiological paediatric fracture assessment: an updated systematic review.Eur Radiol. 2025 Sep;35(9):5264-5286. doi: 10.1007/s00330-025-11449-9. Epub 2025 Mar 10. Eur Radiol. 2025. PMID: 40063108
MeSH terms
LinkOut - more resources
Full Text Sources