MSBooster: improving peptide identification rates using deep learning-based features
- PMID: 37500632
- PMCID: PMC10374903
- DOI: 10.1038/s41467-023-40129-9
MSBooster: improving peptide identification rates using deep learning-based features
Abstract
Peptide identification in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments relies on computational algorithms for matching acquired MS/MS spectra against sequences of candidate peptides using database search tools, such as MSFragger. Here, we present a new tool, MSBooster, for rescoring peptide-to-spectrum matches using additional features incorporating deep learning-based predictions of peptide properties, such as LC retention time, ion mobility, and MS/MS spectra. We demonstrate the utility of MSBooster, in tandem with MSFragger and Percolator, in several different workflows, including nonspecific searches (immunopeptidomics), direct identification of peptides from data independent acquisition data, single-cell proteomics, and data generated on an ion mobility separation-enabled timsTOF MS platform. MSBooster is fast, robust, and fully integrated into the widely used FragPipe computational platform.
© 2023. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant.Mol Cell Proteomics. 2020 Sep;19(9):1575-1585. doi: 10.1074/mcp.TIR120.002048. Epub 2020 Jul 2. Mol Cell Proteomics. 2020. PMID: 32616513 Free PMC article.
-
MSFragger-DDA+ enhances peptide identification sensitivity with full isolation window search.Nat Commun. 2025 Apr 8;16(1):3329. doi: 10.1038/s41467-025-58728-z. Nat Commun. 2025. PMID: 40199897 Free PMC article.
-
SpecEncoder: deep metric learning for accurate peptide identification in proteomics.Bioinformatics. 2024 Jun 28;40(Suppl 1):i257-i265. doi: 10.1093/bioinformatics/btae220. Bioinformatics. 2024. PMID: 38940141 Free PMC article.
-
Rescoring Peptide Spectrum Matches: Boosting Proteomics Performance by Integrating Peptide Property Predictors Into Peptide Identification.Mol Cell Proteomics. 2024 Jul;23(7):100798. doi: 10.1016/j.mcpro.2024.100798. Epub 2024 Jun 11. Mol Cell Proteomics. 2024. PMID: 38871251 Free PMC article. Review.
-
[Advances in high-throughput proteomic analysis].Se Pu. 2021 Feb;39(2):112-117. doi: 10.3724/SP.J.1123.2020.08023. Se Pu. 2021. PMID: 34227342 Free PMC article. Review. Chinese.
Cited by
-
MultiPro: DDA-PASEF and diaPASEF acquired cell line proteomic datasets with deliberate batch effects.Sci Data. 2023 Dec 2;10(1):858. doi: 10.1038/s41597-023-02779-8. Sci Data. 2023. PMID: 38042886 Free PMC article.
-
Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF.Nat Commun. 2024 May 10;15(1):3956. doi: 10.1038/s41467-024-48322-0. Nat Commun. 2024. PMID: 38730277 Free PMC article.
-
Rp3: Ribosome profiling-assisted proteogenomics improves coverage and confidence during microprotein discovery.Nat Commun. 2024 Aug 9;15(1):6839. doi: 10.1038/s41467-024-50301-4. Nat Commun. 2024. PMID: 39122697 Free PMC article.
-
A germline PAF1 paralog complex ensures cell type-specific gene expression.Genes Dev. 2024 Oct 16;38(17-20):866-886. doi: 10.1101/gad.351930.124. Genes Dev. 2024. PMID: 39332828 Free PMC article.
-
Deep Learning Enhances Precision of Citrullination Identification in Human and Plant Tissue Proteomes.Mol Cell Proteomics. 2025 Mar;24(3):100924. doi: 10.1016/j.mcpro.2025.100924. Epub 2025 Feb 5. Mol Cell Proteomics. 2025. PMID: 39921205 Free PMC article.
References
-
- Kitata, R. B., Yang, J. C. & Chen, Y. J. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. Mass Spectrom. Rev. e21781 (2022). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources