Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 12:14:1204311.
doi: 10.3389/fmicb.2023.1204311. eCollection 2023.

Causal relationship between kidney stones and gut microbiota contributes to the gut-kidney axis: a two-sample Mendelian randomization study

Affiliations

Causal relationship between kidney stones and gut microbiota contributes to the gut-kidney axis: a two-sample Mendelian randomization study

Minghui Liu et al. Front Microbiol. .

Abstract

Background: Gut microbiota, particularly Oxalobacter formigenes, has been previously reported to be associated with kidney stones. However, the conflicting results from both observational and intervention studies have created substantial uncertainty regarding the contribution of Oxalobacter formigenes to the formation of kidney stone.

Methods: We employed a two-sample MR analysis to investigate the causal relationship between gut microbiota and kidney stones using GWASs summary statistics obtained from the MiBioGen and FinnGen consortia. Moreover, we conducted a reserve MR analysis to assess the direction of the causal associations between gut microbiota and kidney stones. The inverse variance weighted (IVW) approach represents the primary method of Mendelian Randomization (MR) analysis.

Results: Our analyses do not yield supportive evidence for a causal link between the genus Oxalobacter (OR = 0.99, 95% CI: 0.90-1.09, p = 0.811) and the formation of kidney stones. The order Actinomycetales (OR = 0.79, 95% CI: 0.65-0.96, p = 0.020), family Actinomycetaceae (OR = 0.79, 95% CI: 0.65-0.96, p = 0.019), family Clostridiaceae 1 (OR = 0.80, 95% CI: 0.67-0.96, p = 0.015), genus Clostridiumsensustricto 1 (OR = 0.81, 95% CI: 0.67-0.98, p = 0.030) and genus Hungatella (OR = 0.86, 95% CI: 0.74-0.99, p = 0.040) had protective effects on kidney stones, and the genus Haemophilus (OR = 1.16, 95% CI: 1.01-1.33, p = 0.032), genus Ruminococcaceae (UCG010) (OR = 1.38, 95% CI: 1.04-1.84, p = 0.028), genus Subdoligranulum (OR = 1.27, 95% CI: 1.06-1.52, p = 0.009) were risk factors for kidney stones. Differential abundance analysis provide no evidence of a association between Oxalobacter formigenes and kidney stones, and showed genus Subdoligranulum were risk factors for kidney stones. Reverse MR analysis did not indicate any causal association of kidney stones on gut microbiota. No considerable heterogeneity of instrumental variables or horizontal pleiotropy was observed.

Conclusion: Our two-sample MR study did not find any causal relationship between genus Oxalobacter and kidney stones. The association between gut microbiota and kidney stones does not solely depend on the presence of genus Oxalobacter/Oxalobacter formigenes. A more integrated approach using multiple omics platforms is needed to better understand the pathogenesis of kidney stones in the context of complex gene-environment interactions over time.

Keywords: Mendelian randomization; Oxalobacter formigenes; genus Subdoligranulum; gut microbiota; kidney stones.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Scatter plots for the causal links between gut microbiota and kidney stones.

Similar articles

Cited by

References

    1. Barnett C., Nazzal L., Goldfarb D. S., Blaser M. J. (2016). The Presence of Oxalobacter formigenes in the Microbiome of Healthy Young Adults. J. Urol. 195, 499–506. doi: 10.1016/j.juro.2015.08.070, PMID: - DOI - PMC - PubMed
    1. Bostanghadiri N., Ziaeefar P., Sameni F., Mahmoudi M., Hashemi A., Darban-Sarokhalil D. (2021). The controversial association of gut and urinary microbiota with kidney stone formation. Microb. Pathog. 161:105257. doi: 10.1016/j.micpath.2021.105257, PMID: - DOI - PubMed
    1. Bowden J., Davey Smith G., Burgess S. (2015). Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525. doi: 10.1093/ije/dyv080, PMID: - DOI - PMC - PubMed
    1. Bowden J., Davey Smith G., Haycock P. C., Burgess S. (2016). Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 40, 304–314. doi: 10.1002/gepi.21965, PMID: - DOI - PMC - PubMed
    1. Burgess S., Butterworth A., Thompson S. G. (2013). Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665. doi: 10.1002/gepi.21758, PMID: - DOI - PMC - PubMed

LinkOut - more resources