Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Aster-dependent non-vesicular transport facilitates dietary cholesterol uptake

Alessandra Ferrari et al. bioRxiv. .

Update in

  • Aster-dependent nonvesicular transport facilitates dietary cholesterol uptake.
    Ferrari A, Whang E, Xiao X, Kennelly JP, Romartinez-Alonso B, Mack JJ, Weston T, Chen K, Kim Y, Tol MJ, Bideyan L, Nguyen A, Gao Y, Cui L, Bedard AH, Sandhu J, Lee SD, Fairall L, Williams KJ, Song W, Munguia P, Russell RA, Martin MG, Jung ME, Jiang H, Schwabe JWR, Young SG, Tontonoz P. Ferrari A, et al. Science. 2023 Nov 10;382(6671):eadf0966. doi: 10.1126/science.adf0966. Epub 2023 Nov 10. Science. 2023. PMID: 37943936 Free PMC article.

Abstract

Intestinal cholesterol absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1), the target of the drug ezetimibe (EZ), assists in the initial step of dietary cholesterol uptake. However, how cholesterol moves downstream of NPC1L1 is unknown. Here we show that Aster-B and Aster-C are critical for non-vesicular cholesterol movement in enterocytes, bridging NPC1L1 at the plasma membrane (PM) and ACAT2 in the endoplasmic reticulum (ER). Loss of NPC1L1 diminishes accessible PM cholesterol in enterocytes and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate cholesterol at the PM and display evidence of ER cholesterol depletion, including decreased cholesterol ester stores and activation of the SREBP-2 transcriptional pathway. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, we show that the Aster pathway can be targeted with a small molecule inhibitor to manipulate dietary cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption.

One-sentence summary: Identification of a targetable pathway for regulation of dietary cholesterol absorption.

PubMed Disclaimer

Publication types

LinkOut - more resources