Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Jun 25:2023.06.23.546235.
doi: 10.1101/2023.06.23.546235.

Adhesion energy controls lipid binding-mediated endocytosis

Adhesion energy controls lipid binding-mediated endocytosis

Raluca Groza et al. bioRxiv. .

Update in

  • Adhesion energy controls lipid binding-mediated endocytosis.
    Groza R, Schmidt KV, Müller PM, Ronchi P, Schlack-Leigers C, Neu U, Puchkov D, Dimova R, Matthaeus C, Taraska J, Weikl TR, Ewers H. Groza R, et al. Nat Commun. 2024 Mar 29;15(1):2767. doi: 10.1038/s41467-024-47109-7. Nat Commun. 2024. PMID: 38553473 Free PMC article.

Abstract

Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.

PubMed Disclaimer

Publication types

LinkOut - more resources