Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec;33(12):8925-8935.
doi: 10.1007/s00330-023-09930-4. Epub 2023 Jul 28.

Development and validation of a radiomics-based prediction pipeline for the response to stereotactic radiosurgery therapy in brain metastases

Affiliations

Development and validation of a radiomics-based prediction pipeline for the response to stereotactic radiosurgery therapy in brain metastases

Peng Du et al. Eur Radiol. 2023 Dec.

Abstract

Objectives: The first treatment strategy for brain metastases (BM) plays a pivotal role in the prognosis of patients. Among all strategies, stereotactic radiosurgery (SRS) is considered a promising therapy method. Therefore, we developed and validated a radiomics-based prediction pipeline to prospectively identify BM patients who are insensitive to SRS therapy, especially those who are at potential risk of progressive disease.

Methods: A total of 337 BM patients (277, 30, and 30 in the training set, internal validation set, and external validation set, respectively) were enrolled in the study. 19,377 radiomics features (3 masks × 3 MRI sequences × 2153 features) extracted from 9 ROIs were filtered through LASSO and Max-Relevance and Min-Redundancy (mRMR) algorithms. The selected radiomics features were combined with 4 clinical features to construct a two-stage cascaded model for the prediction of BM patients' response to SRS therapy using SVM and an ensemble learning classifier. The performance of the model was evaluated by its accuracy, specificity, sensitivity, and AUC curve.

Results: Radiomics features were integrated with the clinical features of patients in our optimal model, which showed excellent discriminative performance in the training set (AUC: 0.95, 95% CI: 0.88-0.98). The model was also verified in the internal validation set and external validation set (AUC 0.93, 95% CI: 0.76-0.95 and AUC 0.90, 95% CI: 0.73-0.93, respectively).

Conclusions: The proposed prediction pipeline could non-invasively predict the response to SRS therapy in patients with brain metastases thus assisting doctors to precisely designate individualized first treatment decisions.

Clinical relevance statement: The proposed prediction pipeline combines the radiomics features of multi-modal MRI with clinical features to construct machine learning models that noninvasively predict the response of patients with brain metastases to stereotactic radiosurgery therapy, assisting neuro-oncologists to develop personalized first treatment plans.

Key points: • The proposed prediction pipeline can non-invasively predict the response to SRS therapy. • The combination of multi-modality and multi-mask contributes significantly to the prediction. • The edema index also shows a certain predictive value.

Keywords: Brain neoplasms; Machine learning; Precision medicine; Prognosis; Radiosurgery.

PubMed Disclaimer

References

    1. Suh JH, Kotecha R, Chao ST et al (2020) Current approaches to the management of brain metastases. Nat Rev Clin Oncol 17:279–299 - DOI - PubMed
    1. Karschnia P, Le Rhun E, Vogelbaum MA et al (2021) The evolving role of neurosurgery for central nervous system metastases in the era of personalized cancer therapy. Eur J Cancer 156:93–108 - DOI - PubMed
    1. Fecci PE, Champion CD, Hoj J et al (2019) The evolving modern management of brain metastasis. Clin Cancer Res 25:6570–6580 - DOI - PubMed - PMC
    1. Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295:2483 - DOI - PubMed
    1. Nieder C, Grosu AL, Gaspar LE (2014) Stereotactic radiosurgery (SRS) for brain metastases: a systematic review. Radiat Oncol 9:155 - DOI - PubMed - PMC

LinkOut - more resources