Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 14;131(2):028001.
doi: 10.1103/PhysRevLett.131.028001.

Tensor-Reduced Atomic Density Representations

Affiliations

Tensor-Reduced Atomic Density Representations

James P Darby et al. Phys Rev Lett. .

Abstract

Density-based representations of atomic environments that are invariant under Euclidean symmetries have become a widely used tool in the machine learning of interatomic potentials, broader data-driven atomistic modeling, and the visualization and analysis of material datasets. The standard mechanism used to incorporate chemical element information is to create separate densities for each element and form tensor products between them. This leads to a steep scaling in the size of the representation as the number of elements increases. Graph neural networks, which do not explicitly use density representations, escape this scaling by mapping the chemical element information into a fixed dimensional space in a learnable way. By exploiting symmetry, we recast this approach as tensor factorization of the standard neighbour-density-based descriptors and, using a new notation, identify connections to existing compression algorithms. In doing so, we form compact tensor-reduced representation of the local atomic environment whose size does not depend on the number of chemical elements, is systematically convergable, and therefore remains applicable to a wide range of data analysis and regression tasks.

PubMed Disclaimer

LinkOut - more resources