Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jul 13;12(7):997.
doi: 10.3390/biology12070997.

Next-Generation Sequencing Technology: Current Trends and Advancements

Affiliations
Review

Next-Generation Sequencing Technology: Current Trends and Advancements

Heena Satam et al. Biology (Basel). .

Erratum in

Abstract

The advent of next-generation sequencing (NGS) has brought about a paradigm shift in genomics research, offering unparalleled capabilities for analyzing DNA and RNA molecules in a high-throughput and cost-effective manner. This transformative technology has swiftly propelled genomics advancements across diverse domains. NGS allows for the rapid sequencing of millions of DNA fragments simultaneously, providing comprehensive insights into genome structure, genetic variations, gene expression profiles, and epigenetic modifications. The versatility of NGS platforms has expanded the scope of genomics research, facilitating studies on rare genetic diseases, cancer genomics, microbiome analysis, infectious diseases, and population genetics. Moreover, NGS has enabled the development of targeted therapies, precision medicine approaches, and improved diagnostic methods. This review provides an insightful overview of the current trends and recent advancements in NGS technology, highlighting its potential impact on diverse areas of genomic research. Moreover, the review delves into the challenges encountered and future directions of NGS technology, including endeavors to enhance the accuracy and sensitivity of sequencing data, the development of novel algorithms for data analysis, and the pursuit of more efficient, scalable, and cost-effective solutions that lie ahead.

Keywords: Illumina; Nanopore; PacBio; bioinformatics; genomics; microbiome; molecular diagnostics; next-generation sequencing; pyrosequencing.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Evolution of sequencing technologies. The development of sequencing technologies over the past four decades can be categorized into three generations. The first generation was represented by Sanger sequencing, providing the foundation for DNA sequencing. The second generation introduced massively parallel sequencing with platforms such as Illumina and Ion Torrent, enabling high-throughput sequencing. The current third generation includes PacBio and Nanopore, offering long-read and single-molecule sequencing capabilities.
Figure 2
Figure 2
Overview of various NGS technologies with different platforms and principles.
Figure 3
Figure 3
Various approaches used for genome analysis and applications of NGS, including technological platforms, data analysis, and applications. WGS, whole-genome sequencing; WES, whole-exome sequencing; Seq, sequencing; ITS, internal transcribed spacer; ChIP, chromatin immunoprecipitation; ATAC, assay for transposase-accessible chromatin; AMR, anti-microbial resistance.
Figure 4
Figure 4
Role of NGS technology in cancer diagnosis, prognosis, and therapeutics using an integrative omics approach. FFPE, formalin-fixed paraffin-embedded; Bx, biopsy; AI, artificial intelligence; Ml, machine learning.

References

    1. Goodwin S., McPherson J.D., McCombie W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016;17:333–351. doi: 10.1038/nrg.2016.49. - DOI - PMC - PubMed
    1. Levy S.E., Myers R.M. Advancements in Next-Generation Sequencing. Annu. Rev. Genom. Hum. Genet. 2016;17:95–115. doi: 10.1146/annurev-genom-083115-022413. - DOI - PubMed
    1. Rhoads A., Au K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015;13:278–289. doi: 10.1016/j.gpb.2015.08.002. - DOI - PMC - PubMed
    1. Vaser R., Sović I., Nagarajan N., Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–746. doi: 10.1101/gr.214270.116. - DOI - PMC - PubMed
    1. Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E., Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21:30. doi: 10.1186/s13059-020-1935-5. - DOI - PMC - PubMed

LinkOut - more resources