A Neural Network Approach to Reducing the Costs of Parameter-Setting in the Production of Polyethylene Oxide Nanofibers
- PMID: 37512721
- PMCID: PMC10386166
- DOI: 10.3390/mi14071410
A Neural Network Approach to Reducing the Costs of Parameter-Setting in the Production of Polyethylene Oxide Nanofibers
Abstract
Nanofibers, which are formed by the electrospinning process, are used in a variety of applications. For this purpose, a specific diameter suited for each application is required, which is achieved by varying a set of parameters. This parameter adjustment process is empirical and works by trial and error, causing high input costs and wasting time and financial resources. In this work, an artificial neural network model is presented to predict the diameter of polyethylene nanofibers, based on the adjustment of 15 parameters. The model was trained from 105 records from data obtained from the literature and was then validated with nine nanofibers that were obtained and measured in the laboratory. The average error between the actual results was 2.29%. This result differs from those taken in an evaluation of the dataset. Therefore, the importance of increasing the dataset and the validation using independent data is highlighted.
Keywords: PEO nanofibers; artificial neural networks; electrospinning.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Torres-Martinez E.J., Cornejo Bravo J.M., Serrano Medina A., Pérez González G.L., Villarreal Gómez L.J. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Deliv. 2018;15:1360–1374. doi: 10.2174/1567201815666180723114326. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
