Generative Deep Learning-Based Thermographic Inspection of Artwork
- PMID: 37514656
- PMCID: PMC10383240
- DOI: 10.3390/s23146362
Generative Deep Learning-Based Thermographic Inspection of Artwork
Abstract
Infrared thermography is a widely utilized nondestructive testing technique in the field of artwork inspection. However, raw thermograms often suffer from problems, such as limited quantity and high background noise, due to limitations inherent in the acquisition equipment and experimental environment. To overcome these challenges, there is a growing interest in developing thermographic data enhancement methods. In this study, a defect inspection method for artwork based on principal component analysis is proposed, incorporating two distinct deep learning approaches for thermographic data enhancement: spectral normalized generative adversarial network (SNGAN) and convolutional autoencoder (CAE). The SNGAN strategy focuses on augmenting the thermal images, while the CAE strategy emphasizes enhancing their quality. Subsequently, principal component thermography (PCT) is employed to analyze the processed data and improve the detectability of defects. Comparing the results to using PCT alone, the integration of the SNGAN strategy led to a 1.08% enhancement in the signal-to-noise ratio, while the utilization of the CAE strategy resulted in an 8.73% improvement.
Keywords: artwork; convolutional autoencoder; generative adversarial network; infrared thermography; panel painting.
Conflict of interest statement
The authors declare no conflict of interest.
Figures








References
-
- Garrido I., Erazo-Aux J., Lagüela S., Sfarra S., Ibarra-Castanedo C., Pivarčiová E., Gargiulo G., Maldague X., Arias P. Introduction of deep learning in thermographic monitoring of cultural heritage and improvement by automatic thermogram pre-processing algorithms. Sensors. 2021;21:750. doi: 10.3390/s21030750. - DOI - PMC - PubMed
-
- Kudinov I.I., Golovkov A.N., Shishkin P.A., Skorobogatko D.S., Andreev A.I., Generalov A.S. Evaluating the efficiency of using ultraviolet radiation sources in carrying out fluorescent penetrant testing. Russ. J. Nondestruct. Test. 2022;58:57–69. doi: 10.1134/S1061830922010041. - DOI
-
- Cheng X., Ma G., Wu Z., Zu H., Hu X. Automatic defect depth estimation for ultrasonic testing in carbon fiber reinforced composites using deep learning. NDT E Int. 2023;135:102804. doi: 10.1016/j.ndteint.2023.102804. - DOI
-
- Fernandes H., Summa J., Daudre J., Rabe U., Fell J., Sfarra S., Gargiulo G., Herrmann H.G. Characterization of ancient marquetry using different non-destructive testing techniques. Appl. Sci. 2021;11:7979. doi: 10.3390/app11177979. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources