Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep;194(Pt B):115337.
doi: 10.1016/j.marpolbul.2023.115337. Epub 2023 Jul 27.

Seasonal variation, contamination and ecological risk assessment of heavy metals in sediments of coastal wetlands along the Bay of Bengal

Affiliations
Free article

Seasonal variation, contamination and ecological risk assessment of heavy metals in sediments of coastal wetlands along the Bay of Bengal

Mohammad Belal Hossain et al. Mar Pollut Bull. 2023 Sep.
Free article

Abstract

Functioning of coastal wetland habitats is essential for the ecosystem integrity and sustainability of coastal development that enables human progress along transitional waterways. However, these habitats are continuously being affected by a variety of pollutants including metallic elements. In this study, seasonal variation, pollution status and ecological risks of heavy metals (Cr, Mn, Co, Ni, As, Cu, Zn and Pb) in surface sediment of the several types of coastal wetlands (estuaries, mudflats, sandy beaches, mangroves, and saltmarshes) were detected by using X-ray fluorescence (EDXRF) spectrometry. The results showed that the mean concentration level of metals in the surficial sediment samples followed the order of Cu (84.06 ± 8.60 μg/g) > Zn (51.00 ± 8.97 μg/g) > Mn (38.25 ± 11.34 μg/g) > Cr (3.52 ± 0.91 μg/g) > Pb (0.27 ± 0.13 μg/g) > Co (0.24 ± 0.13 μg/g) > As (0.21 ± 0.12 μg/g) > Ni (0.16 ± 0.08 μg/g). In comparison to the pre-monsoon period, the post-monsoon season had higher concentrations of heavy metals while the overall accumulation level of metals in the wetlands exhibited a pattern of estuarine wetland (28.47 ± 31.35 μg/g) > mangrove (22.23 ± 30.79 μg/g) > mudflat (21.79 ± 29.71 μg/g) > sandy beach (21.47 ± 28.15 μg/g) > saltmarsh (21.28 ± 30.02 μg/g). Although, the pollution assessment indices e.g., contamination factor (CF), degree of contamination (CD), geoaccumulation index (Igeo) and pollution load index (PLI) showed minimal levels of contamination in the studied sites, enrichment factor (EF) suggested greater enrichment of the metals in the pre-monsoon season but with the lowest ecological risk (RI < 40) in both seasons. Cluster analysis, principal component analysis (PCA), and Pearson's correlation were performed to determine the sources of heavy metals in collected samples which specified that Pb, As, Co and Ni predominantly came from natural sources whereas Cu, Mn, Zn and Cr emerged from anthropogenic sources such as industrial effluents, domestic wastewater, fertilizer or pesticide consumption on farmland along the riverbank, vessel emissions, and the confluence of tributary rivers.

Keywords: Coastal wetlands; Contamination; Ecosystem services; Heavy metal; Risk assessment; Seasonal variation.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Bilal Ahamad Paray reports financial support was provided by King Saud University.

Similar articles

Cited by

LinkOut - more resources