Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2022 Dec:6:100214.
doi: 10.1016/j.cscee.2022.100214. Epub 2022 Apr 30.

Evaluation of SARS-CoV-2 concentrations in wastewater and river water samples

Affiliations
Case Reports

Evaluation of SARS-CoV-2 concentrations in wastewater and river water samples

Maísa Santos Fonseca et al. Case Stud Chem Environ Eng. 2022 Dec.

Abstract

There are only a few established methods to determine the concentration of encapsulated viruses, such as SARS-CoV-2, in water matrices, limiting the application of wastewater-based epidemiology (WBE)-an important tool for public health research. The present study compared four methods that are commonly used to concentrate non-encapsulated enteric viruses for determining SARS-CoV-2 concentration in wastewater and wastewater-enriched river water samples. The four methods tested were electronegative membrane with Mg+2 addition, aluminum hydroxide-based precipitation, polyethylene glycol (PEG) 8000 precipitation, and ultrafiltration (with porosity of 10 and 50 kDa). Prior to the concentration step, filtration or centrifugation was performed to remove suspended particles from the samples (pretreatment). To evaluate the recovery efficiency (%), samples of SARS-CoV-2 from nasopharyngeal swabs obtained from RT-qPCR-positive patients were used as spiked samples. The second part of the analysis involved the quantification of the SARS-CoV-2 copy number in analytes without SARS-CoV-2-spiked samples. Among the tested methods, pretreatment via centrifugation followed by ultrafiltration with a 50-kDa cut-off was found the most efficient method for wastewater samples with spiked samples (54.3 or 113.01% efficiency). For the wastewater-enriched river samples with spiked samples, pretreatment via centrifugation followed by filtration using an electronegative membrane was the most efficient method (110.8% and 95.9% for N1 and N2 markers, respectively). However, ultrafiltration of the raw river water samples using 10 or 50 kDa cut-off filters and PEG 8000 precipitation showed the best concentration efficiency based on copy number, regardless of the pretreatment approach or sample type (values ranging from 3 × 105 to 6.7 × 103). The effectiveness of the concentration method can vary depending on the type of sample and concentration method. We consider that this study will contribute to more widespread use of WBE for the environmental surveillance of SARS-CoV-2.

Keywords: COVID-19; Molecular diagnosis; PEG concentration; Ultrafiltration; Wastewater surveillance; Wastewater-based epidemiology.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Figures

Image 1
Graphical abstract
Fig. 1
Fig. 1
Overview of the methodology applied for the evaluation of different concentration methods for detecting SARS-CoV-2 in river and wastewater samples. Created with BioRender.com.
Fig. 2
Fig. 2
Wastewater samples not subjected to pretreatment (filtration or centrifugation) after concentration using the PEG 8000 method: (A) before and (B) after using the OneStep PCR Inhibitor Removal Kit™.

References

    1. Hamouda M., Mustafa F., Maraqa M., Rizvi T., Aly Hassan A. Wastewater surveillance for SARS-CoV-2: lessons learnt from recent studies to define future applications. Sci. Total Environ. 2021;759 doi: 10.1016/J.SCITOTENV.2020.143493. - DOI - PMC - PubMed
    1. Farkas K., Walker D.I., Adriaenssens E.M., Mcdonald J.E., Hillary L.S., Malham S.K., Jones D.L. 2020. Viral indicators for tracking Domestic Wastewater Contamination in the Aquatic Environment. - DOI - PMC - PubMed
    1. Ahmed W., Angel N., Edson J., Bibby K., Bivins A., O'Brien J.W., Choi P.M., Kitajima M., Simpson S.L., Li J., Tscharke B., Verhagen R., Smith W.J.M., Zaugg J., Dierens L., Hugenholtz P., V Thomas K., Mueller J.F. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728 https://linkinghub.elsevier.com/retrieve/pii/S0048969720322816 - PMC - PubMed
    1. Albastaki A., Naji M., Lootah R., Almeheiri R., Almulla H., Almarri I., Alreyami A., Aden A., Alghafri R. First confirmed detection of SARS-COV-2 in untreated municipal and aircraft wastewater in Dubai, UAE: the use of wastewater based epidemiology as an early warning tool to monitor the prevalence of COVID-19. Sci. Total Environ. 2021;760 doi: 10.1016/j.scitotenv.2020.143350. - DOI - PMC - PubMed
    1. Gonçalves J., Koritnik T., Mioč V., Trkov M., Bolješič M., Berginc N., Prosenc K., Kotar T., Paragi M. Detection of SARS-CoV-2 RNA in hospital wastewater from a low COVID-19 disease prevalence area. Sci. Total Environ. 2021;755 doi: 10.1016/j.scitotenv.2020.143226. - DOI - PMC - PubMed

Publication types

LinkOut - more resources