Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep;251(3 Pt 2):F528-31.
doi: 10.1152/ajprenal.1986.251.3.F528.

Glomerular capillary permeability in developing canines

Glomerular capillary permeability in developing canines

D I Goldsmith et al. Am J Physiol. 1986 Sep.

Abstract

The changes in glomerular permeability that occur during development were assessed in 1- and 6-wk-old canines by analyzing dextran-sieving curves obtained in six animals at each age. The fractional clearance of the smallest dextran molecules (18 A) was 0.97 +/- 0.02 (+/- SE) in both 1- and 6-wk-old animals, and it became progressively less at larger molecular sizes. The sieving curves were consistent with an isosporous model of a glomerular capillary. When axial changes in protein concentration were included in the mathematical model, the apparent pore radius was 62.7 +/- 1.7 and 61.7 +/- 1.69 A in 1- and 6-wk-old puppies, respectively (P greater than 0.7). The effects of developmental changes in hydrostatic pressure and renal blood flow were balanced by the increases in serum protein concentration and filtration fraction leaving the fractional clearances of macromolecules unchanged. In contrast, the total cross-sectional pore area per unit path length (Aw/delta x) increased during this 6-wk period by approximately 7.5-fold (from 1.39 +/- 0.2 to 10.55 +/- 3.0 10(-5) cm, P less than 0.0001), and the ultrafiltration coefficient rose from 0.012 +/- 0.002 to 0.093 +/- 0.012 ml X s-1 X mmHg-1 (P less than 0.0001). The findings reveal constancy of pore size and an increase in total pore area as a function of age. Analysis by classical pore theory yielded similar findings. We conclude that the predominant factor determining the rise in glomerular filtration rate during development is the large increment in Aw/delta x, which in turn is due to increases in the surface area and pore density of the glomerular capillaries.

PubMed Disclaimer

Publication types

LinkOut - more resources