Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug;29(8):2007-2018.
doi: 10.1038/s41591-023-02483-5. Epub 2023 Jul 31.

Deep-learning-enabled protein-protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution

Affiliations

Deep-learning-enabled protein-protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution

Guangyu Wang et al. Nat Med. 2023 Aug.

Abstract

Host-pathogen interactions and pathogen evolution are underpinned by protein-protein interactions between viral and host proteins. An understanding of how viral variants affect protein-protein binding is important for predicting viral-host interactions, such as the emergence of new pathogenic SARS-CoV-2 variants. Here we propose an artificial intelligence-based framework called UniBind, in which proteins are represented as a graph at the residue and atom levels. UniBind integrates protein three-dimensional structure and binding affinity and is capable of multi-task learning for heterogeneous biological data integration. In systematic tests on benchmark datasets and further experimental validation, UniBind effectively and scalably predicted the effects of SARS-CoV-2 spike protein variants on their binding affinities to the human ACE2 receptor, as well as to SARS-CoV-2 neutralizing monoclonal antibodies. Furthermore, in a cross-species analysis, UniBind could be applied to predict host susceptibility to SARS-CoV-2 variants and to predict future viral variant evolutionary trends. This in silico approach has the potential to serve as an early warning system for problematic emerging SARS-CoV-2 variants, as well as to facilitate research on protein-protein interactions in general.

PubMed Disclaimer

References

    1. Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015). - PubMed - PMC
    1. Starr, T. N. et al. ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. Nature 603, 913–918 (2022). - PubMed - PMC
    1. Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e286 (2020). - PubMed - PMC
    1. Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e819 (2020). - PubMed - PMC
    1. Thomson, E. C. et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184, 1171–1187.e1120 (2021). - PubMed - PMC

Publication types

Substances

Supplementary concepts

LinkOut - more resources