Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Aug;308(2):e222217.
doi: 10.1148/radiol.222217.

Quantifying Uncertainty in Deep Learning of Radiologic Images

Affiliations
Review

Quantifying Uncertainty in Deep Learning of Radiologic Images

Shahriar Faghani et al. Radiology. 2023 Aug.

Abstract

In recent years, deep learning (DL) has shown impressive performance in radiologic image analysis. However, for a DL model to be useful in a real-world setting, its confidence in a prediction must also be known. Each DL model's output has an estimated probability, and these estimated probabilities are not always reliable. Uncertainty represents the trustworthiness (validity) of estimated probabilities. The higher the uncertainty, the lower the validity. Uncertainty quantification (UQ) methods determine the uncertainty level of each prediction. Predictions made without UQ methods are generally not trustworthy. By implementing UQ in medical DL models, users can be alerted when a model does not have enough information to make a confident decision. Consequently, a medical expert could reevaluate the uncertain cases, which would eventually lead to gaining more trust when using a model. This review focuses on recent trends using UQ methods in DL radiologic image analysis within a conceptual framework. Also discussed in this review are potential applications, challenges, and future directions of UQ in DL radiologic image analysis.

PubMed Disclaimer

LinkOut - more resources