Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 16;145(32):17564-17569.
doi: 10.1021/jacs.3c07018. Epub 2023 Aug 2.

C(sp2)-H Hydroxylation via Catalytic 1,4-Ni Migration with N2O

Affiliations

C(sp2)-H Hydroxylation via Catalytic 1,4-Ni Migration with N2O

Huihui Zhang et al. J Am Chem Soc. .

Abstract

Herein, we report a Ni-catalyzed C(sp2)-H hydroxylation of aryl bromides with N2O as an oxygen-atom donor. The reaction is enabled by a 1,4-Ni translocation that results in ipso/ortho difunctionalized products. Regioselectivity and stereocontrol are dictated by a judicious choice of the ligand backbone, thus giving access to either carbonyl or phenol derivatives and offering an opportunity to repurpose hazardous substances en route to valuable oxygen-containing building blocks.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Oxygen-Transfer Reactions with N2O and Ni
Scheme 2
Scheme 2. sp2 C–H Hydroxylation with N2O via a 1,4-Ni Shift
Scheme 3
Scheme 3. Preliminary Mechanistic Studies

Similar articles

Cited by

References

    1. Prather M. J. Time Scales in Atmospheric Chemistry: Coupled Perturbations to N2O, NOy, and O3. Science 1998, 279, 1339–1341. 10.1126/science.279.5355.1339. - DOI - PubMed
    2. Ravishankara A. R.; Daniel J. S.; Portmann R. W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. 10.1126/science.1176985. - DOI - PubMed
    3. Prather M. J.; Hsu J. Coupling of Nitrous Oxide and Methane by Global Atmospheric Chemistry. Science 2010, 330, 952–954. 10.1126/science.1196285. - DOI - PubMed
    4. Tian H.; Xu R.; Canadell J. G.; Thompson R. L.; Winiwarter W.; Suntharalingam P.; Davidson E. A.; Ciais P.; Jackson R. B.; Janssens-Maenhout G.; Prather M. J.; Regnier P.; Pan N.; Pan S.; Peters G. P.; Shi H.; Tubiello F. N.; Zaehle S.; Zhou F.; Arneth A.; Battaglia G.; Berthet S.; Bopp L.; Bouwman A. F.; Buitenhuis E. T.; Chang J.; Chipperfield M. P.; Dangal S. R. S.; Dlugokencky E.; Elkins J. W.; Eyre B. D.; Fu B.; Hall B.; Ito A.; Joos F.; Krummel P. B.; Landolfi A.; Laruelle G. G.; Lauerwald R.; Li W.; Lienert S.; Maavara T.; MacLeod M.; Millet D. B.; Olin S.; Patra P. K.; Prinn R. G.; Raymond P. A.; Ruiz D. J.; van der Werf G. R.; Vuichard N.; Wang J.; Weiss R. F.; Wells K. C.; Wilson C.; Yang J.; Yao Y. A Comprehensive Quantification of Global Nitrous Oxide Sources and Sinks. Nature 2020, 586, 248–256. 10.1038/s41586-020-2780-0. - DOI - PubMed
    1. Parmon V. N.; Panov G. I.; Uriarte A.; Noskov A. S. Catal. Today 2005, 100, 115–131. 10.1016/j.cattod.2004.12.012. - DOI
    2. Severin K. Synthetic Chemistry with Nitrous Oxide. Chem. Soc. Rev. 2015, 44, 6375–6386. 10.1039/C5CS00339C. - DOI - PubMed
    1. For a selection of techniques that repurpose N2O en route to valuable added-value chemicals, seeYamada T.; Hashimoto K.; Kitaichi Y.; Suzuki K.; Ikeno T. Nitrous Oxide Oxidation of Olefins Catalyzed by Ruthenium Porphyrin Complexes. Chem. Lett. 2001, 30, 268–269. 10.1246/cl.2001.268. - DOI
    2. Tskhovrebov A. G.; Solari E.; Scopelliti R.; Severin K. Organometallics 2014, 33, 2405–2408. 10.1021/om500333y. - DOI
    3. Kiefer G.; Riedel T.; Dyson P. J.; Scopelliti R.; Severin K. Synthesis of Triazenes with Nitrous Oxide. Angew. Chem., Int. Ed. 2015, 54, 302–305. 10.1002/anie.201408597. - DOI - PubMed
    4. Banert K.; Singh N.; Fiedler B.; Friedrich J.; Korb M.; Lang H. 4,5-Dihydro-1,2,3-oxadiazole: A Very Elusive Key Intermediate in Various Important Chemical Transformations. Chem.—Eur. J. 2015, 21, 15092–15099. 10.1002/chem.201502326. - DOI - PubMed
    5. Gianetti T. L.; Annen S. P.; Santiso-Quinones G.; Reiher M.; Driess M.; Grützmacher H. Nitrous Oxide as a Hydrogen Acceptor for the Dehydrogenative Coupling of Alcohols. Angew. Chem., Int. Ed. 2016, 55, 1854–1858. 10.1002/anie.201509288. - DOI - PubMed
    6. Gianetti T. L.; Rodríguez-Lugo R. E.; Harmer J. R.; Trincado M.; Vogt M.; Santiso-Quinones G.; Grützmacher H. Zero-Valent Amino-Olefin Cobalt Complexes as Catalysts for Oxygen Atom Transfer Reactions from Nitrous Oxide. Angew. Chem., Int. Ed. 2016, 55, 15323–15328. 10.1002/anie.201609173. - DOI - PubMed
    7. Zeng R.; Feller M.; Ben-David Y.; Milstein D. Hydrogenation and Hydrosilylation of Nitrous Oxide Homogeneously Catalyzed by a Metal Complex. J. Am. Chem. Soc. 2017, 139, 5720–5723. 10.1021/jacs.7b02124. - DOI - PMC - PubMed
    8. Zeng R.; Feller M.; Diskin-Posner Y.; Shimon L. J. W.; Ben-David Y.; Milstein D. CO Oxidation by N2O Homogeneously Catalyzed by Ruthenium Hydride Pincer Complexes Indicating a New Mechanism. J. Am. Chem. Soc. 2018, 140, 7061–7064. 10.1021/jacs.8b03927. - DOI - PMC - PubMed
    9. Eymann L. Y. M.; Varava P.; Shved A. M.; Curchod B. F. E.; Liu Y.; Planes M. O.; Sienkiewicz A.; Scopelliti R.; Tirani F. F.; Severin K. Synthesis of Organic Super-Electron-Donors by Reaction of Nitrous Oxide with N-Heterocyclic Olefins. J. Am. Chem. Soc. 2019, 141, 17112–17116. 10.1021/jacs.9b10660. - DOI - PubMed
    1. Tolman W. B. Binding and Activation of N2O at Transition-Metal Centers: Recent Mechanistic Insights. Angew. Chem., Int. Ed. 2010, 49, 1018–1024. 10.1002/anie.200905364. - DOI - PMC - PubMed
    2. Figg T. M.; Cundari T. R. Mechanistic Study of Oxy Insertion into Nickel-Carbon Bonds with Nitrous Oxide. Organometallics 2012, 31, 4998–5004. 10.1021/om300270x. - DOI
    3. Yao L.; Li Y.; Huang L.; Guo K.; Ren G.; Wu Z.; Lei Q.; Fang W.; Xie H. A DFT Study on the Mechanisms of Hydrogenation and Hydrosilylation of Nitrous Oxide Catalyzed by a Ruthenium PNP Pincer Complex. Comput. Theor. Chem. 2018, 1128, 48–55. 10.1016/j.comptc.2018.02.010. - DOI
    4. Lehnert N.; Dong H. T.; Harland J. B.; Hunt A. P.; White C. J. Reversing Nitrogen Fixation. Nat. Rev. Chem. 2018, 2, 278–289. 10.1038/s41570-018-0041-7. - DOI
    1. Matsunaga P. T.; Hillhouse G. L.; Rheingold A. L. Oxygen-Atom Transfer from Nitrous Oxide to a Nickel Metallacycle. Synthesis, Structure, and Reactions of [Cyclic] (2,2’-Bipyridine) Ni(OCH2CH2CH2CH2). J. Am. Chem. Soc. 1993, 115, 2075–2077. 10.1021/ja00058a085. - DOI
    2. Koo K.; Hillhouse G. L.; Rheingold A. L. Oxygen-Atom Transfer from Nitrous Oxide to an Organonickel(II) Phosphine Complex. Syntheses and Reactions of New Nickel(II) Aryloxides and the Crystal Structure of [Cyclic] (Me2PCH2CH2PMe2) Ni(O-o-C6H4CMe2CH2). Organometallics 1995, 14, 456–460. 10.1021/om00001a062. - DOI
    3. Matsunaga P. T.; Mavropoulos J. C.; Hillhouse G. L. Oxygen-Atom Transfer from Nitrous Oxide (N N O) to Nickel Alkyls. Syntheses and Reactions of Nickel(II) Alkoxides. Polyhedron 1995, 14, 175–185. 10.1016/0277-5387(94)00330-H. - DOI