Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 14;24(8):3510-3521.
doi: 10.1021/acs.biomac.3c00276. Epub 2023 Aug 2.

In Vitro and In Vivo Safety of Hyaluronic Acid-Decorated Microparticles for Intravitreal Injection of Palmitoylethanolamide, Citicoline, or Glial-Cell-Derived Neurotrophic Factor

Affiliations

In Vitro and In Vivo Safety of Hyaluronic Acid-Decorated Microparticles for Intravitreal Injection of Palmitoylethanolamide, Citicoline, or Glial-Cell-Derived Neurotrophic Factor

Teresa Silvestri et al. Biomacromolecules. .

Abstract

The treatment of posterior eye segment diseases through intravitreal injection requires repeated injections of an active molecule, which may be associated with serious side effects and poor patient compliance. One brilliant strategy to overcome these issues is the use of drug-loaded microparticles for sustained release, aiming at reducing the frequency of injections. Therefore, the aim of this work was to assess the safety features of poly(lactic-co-glycolic acid) (PLGA)-based, hyaluronic acid-decorated microparticles loaded with palmitoylethanolamide (PEA), citicoline (CIT), or glial-cell-derived neurotrophic factor (GDNF). Microparticles were prepared by double emulsion-solvent evaporation and fully characterized for their technological features. Microparticles possessed a satisfactory safety profile in vitro on human retinal pigment epithelial (ARPE-19) cells. Interestingly, the administration of free GDNF led to a loss of cell viability, while GDNF sustained release displayed a positive effect in that regard. In vivo results confirmed the safety profile of both empty and loaded microparticles. Overall, the outcomes suggest that the produced microparticles are promising for improving the local administration of neuroprotective molecules. Further studies will be devoted to assess the therapeutic ability of microparticles.

PubMed Disclaimer

LinkOut - more resources