Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Aug;620(7972):47-60.
doi: 10.1038/s41586-023-06221-2. Epub 2023 Aug 2.

Scientific discovery in the age of artificial intelligence

Affiliations
Review

Scientific discovery in the age of artificial intelligence

Hanchen Wang et al. Nature. 2023 Aug.

Erratum in

  • Publisher Correction: Scientific discovery in the age of artificial intelligence.
    Wang H, Fu T, Du Y, Gao W, Huang K, Liu Z, Chandak P, Liu S, Van Katwyk P, Deac A, Anandkumar A, Bergen K, Gomes CP, Ho S, Kohli P, Lasenby J, Leskovec J, Liu TY, Manrai A, Marks D, Ramsundar B, Song L, Sun J, Tang J, Veličković P, Welling M, Zhang L, Coley CW, Bengio Y, Zitnik M. Wang H, et al. Nature. 2023 Sep;621(7978):E33. doi: 10.1038/s41586-023-06559-7. Nature. 2023. PMID: 37648871 No abstract available.

Abstract

Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect and interpret large datasets, and gain insights that might not have been possible using traditional scientific methods alone. Here we examine breakthroughs over the past decade that include self-supervised learning, which allows models to be trained on vast amounts of unlabelled data, and geometric deep learning, which leverages knowledge about the structure of scientific data to enhance model accuracy and efficiency. Generative AI methods can create designs, such as small-molecule drugs and proteins, by analysing diverse data modalities, including images and sequences. We discuss how these methods can help scientists throughout the scientific process and the central issues that remain despite such advances. Both developers and users of AI toolsneed a better understanding of when such approaches need improvement, and challenges posed by poor data quality and stewardship remain. These issues cut across scientific disciplines and require developing foundational algorithmic approaches that can contribute to scientific understanding or acquire it autonomously, making them critical areas of focus for AI innovation.

PubMed Disclaimer

References

    1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). This survey summarizes key elements of deep learning and its development in speech recognition, computer vision and and natural language processing. - PubMed - DOI
    1. de Regt, H. W. Understanding, values, and the aims of science. Phil. Sci. 87, 921–932 (2020). - DOI
    1. Pickstone, J. V. Ways of Knowing: A New History of Science, Technology, and Medicine (Univ. Chicago Press, 2001).
    1. Han, J. et al. Deep potential: a general representation of a many-body potential energy surface. Commun. Comput. Phys. 23, 629–639 (2018). This paper introduced a deep neural network architecture that learns the potential energy surface of many-body systems while respecting the underlying symmetries of the system by incorporating group theory.
    1. Akiyama, K. et al. First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875, L4 (2019). - DOI

Publication types

MeSH terms

LinkOut - more resources