Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May 1;235(3):833-8.
doi: 10.1042/bj2350833.

Metabolism of the diacetyl derivatives of stereoisomeric monoacyl-sn-glycerols by rat adipocytes in vitro

Metabolism of the diacetyl derivatives of stereoisomeric monoacyl-sn-glycerols by rat adipocytes in vitro

W W Christie et al. Biochem J. .

Abstract

Diacetyl long-chain 1(3)- and 2-acyl-sn-glycerols containing either [9,10-3H]oleic acid or [1-14C]palmitic acid were synthesized by partial hydrolysis of the corresponding labelled triacylglycerols and acetylation. They were obtained in a high degree of stereochemical purity by preparative h.p.l.c. on a column containing a diol bonded phase. Each compound was rapidly metabolized by adipocyte preparations in vitro, and a high proportion of the label was recovered in the unesterified fatty acid and triacylglycerol fractions. Negligible amounts of intermediate products of hydrolysis were detected. Triacylglycerols were formed from [9,10-3H]oleic acid and from diacetyl-1(3)-[9,10-3H]oleoyl glycerol precursors at about the same rate, but the 2-isomer was metabolized rather more slowly. The results were consistent with the hypothesis that essentially complete hydrolysis occurred in the medium or at the plasma membrane, through the actions of lipoprotein lipase and monoacylglycerol lipase, and that subsequent esterification took place within the cell. To confirm that no putative intermediate monoacylglycerols were utilized for triacylglycerol biosynthesis via the monacylglycerol pathway, the positional distributions of fatty acids in triacylglycerols from each substrate were determined. No positional selectivity was observed. It was concluded that monoacylglycerols, of an origin exogenous to the tissue, e.g. those derived from plasma triacylglycerols, were not utilized to a significant degree for triacylglycerol biosynthesis in adipose tissue. The diacetyl derivatives of monoacylglycerols may serve as useful stereochemical probes in studies of triacylglycerol biosynthesis via the monoacylglycerol pathway in other tissues.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Lipid Res. 1968 Sep;9(5):667-8 - PubMed
    1. J Biol Chem. 1964 Feb;239:375-80 - PubMed
    1. Biochem Biophys Res Commun. 1971 Oct 1;45(1):246-50 - PubMed
    1. Biochim Biophys Acta. 1973 Sep 25;316(3):282-7 - PubMed
    1. Methods Enzymol. 1975;35:555-61 - PubMed