Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 17;83(16):2856-2871.e8.
doi: 10.1016/j.molcel.2023.07.006. Epub 2023 Aug 2.

CTCF and R-loops are boundaries of cohesin-mediated DNA looping

Affiliations
Free article

CTCF and R-loops are boundaries of cohesin-mediated DNA looping

Hongshan Zhang et al. Mol Cell. .
Free article

Abstract

Cohesin and CCCTC-binding factor (CTCF) are key regulatory proteins of three-dimensional (3D) genome organization. Cohesin extrudes DNA loops that are anchored by CTCF in a polar orientation. Here, we present direct evidence that CTCF binding polarity controls cohesin-mediated DNA looping. Using single-molecule imaging, we demonstrate that a critical N-terminal motif of CTCF blocks cohesin translocation and DNA looping. The cryo-EM structure of the cohesin-CTCF complex reveals that this CTCF motif ahead of zinc fingers can only reach its binding site on the STAG1 cohesin subunit when the N terminus of CTCF faces cohesin. Remarkably, a C-terminally oriented CTCF accelerates DNA compaction by cohesin. DNA-bound Cas9 and Cas12a ribonucleoproteins are also polar cohesin barriers, indicating that stalling may be intrinsic to cohesin itself. Finally, we show that RNA-DNA hybrids (R-loops) block cohesin-mediated DNA compaction in vitro and are enriched with cohesin subunits in vivo, likely forming TAD boundaries.

Keywords: 3D genome; CTCF; R-loop; TADs; cohesin; cryo-EM; single-molecule.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Comment in

Publication types

LinkOut - more resources