Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Jul 25:2023.07.24.550444.
doi: 10.1101/2023.07.24.550444.

Mechano-dependent sorbitol accumulation supports biomolecular condensate

Mechano-dependent sorbitol accumulation supports biomolecular condensate

Stephanie Torrino et al. bioRxiv. .

Update in

  • Mechano-dependent sorbitol accumulation supports biomolecular condensate.
    Torrino S, Oldham WM, Tejedor AR, Burgos IS, Nasr L, Rachedi N, Fraissard K, Chauvet C, Sbai C, O'Hara BP, Abélanet S, Brau F, Favard C, Clavel S, Collepardo-Guevara R, Espinosa JR, Ben-Sahra I, Bertero T. Torrino S, et al. Cell. 2025 Jan 23;188(2):447-464.e20. doi: 10.1016/j.cell.2024.10.048. Epub 2024 Nov 25. Cell. 2025. PMID: 39591966

Abstract

Biomolecular condensates regulate a wide range of cellular functions from signaling to RNA metabolism 1, 2 , yet, the physiologic conditions regulating their formation remain largely unexplored. Biomolecular condensate assembly is tightly regulated by the intracellular environment. Changes in the chemical or physical conditions inside cells can stimulate or inhibit condensate formation 3-5 . However, whether and how the external environment of cells can also regulate biomolecular condensation remain poorly understood. Increasing our understanding of these mechanisms is paramount as failure to control condensate formation and dynamics can lead to many diseases 6, 7 . Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo . We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol, but not glucose, concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacologic and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer - a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions. Altogether, we uncover molecular driving forces underlying protein phase transition and provide critical insights to understand the biological function and dysfunction of protein phase separation.

PubMed Disclaimer

Publication types

LinkOut - more resources