Biosynthetic Plastics as Tunable Elastic and Visible Stent with Shape-Memory to Treat Biliary Stricture
- PMID: 37552006
- PMCID: PMC10582434
- DOI: 10.1002/advs.202303779
Biosynthetic Plastics as Tunable Elastic and Visible Stent with Shape-Memory to Treat Biliary Stricture
Abstract
Common biliary tract is ≈4 mm in diameter to deliver bile from liver to small intestine to help digestion. The abnormal narrowing leads to severe symptoms such as pain and nausea. Stents are an effective treatment. Compared with non-degradable stents which require repeated removal, biodegradable stents have the advantage of reducing secondary injury related to endoscopic operation and patient burden. However, current biodegradable materials may cause tissue hyperplasia and the treatment method does not target etiology of stricture. So recurrence rates after biodegradable stent implantation are still high. Here, a biodegradable helical stent fabricated from biosynthetic P(3HB-co-4HB) is reported. Tunable properties can be acquired through altering culture substrates. Stent shows shape memory in various solvents. The stent has an optimized design with helical structure and outer track. The self-expanding of helical structure and double drainage realized by outer track greatly improve drainage of bile. Importantly, stent-loading triamcinolone acetonide can inhibit proliferation of fibroblasts and reduce incidence of restricture. Therapeutic effect is also demonstrated in minipigs with biliary stricture. The results of minipig experiments show that biliary duct in treatment group is unobstructed and tissue hyperplasia is effectively inhibited.
Keywords: biliary stricture; biodegradable stent; endoscopy; polyhydroxyalkanoate; shape memory; triamcinolone acetonide.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures








Similar articles
-
Anti-fibrotic and anti-stricture effects of biodegradable biliary stents braided with dexamethasone-impregnated sheath/core structured monofilaments.Acta Biomater. 2024 Apr 1;178:137-146. doi: 10.1016/j.actbio.2024.02.037. Epub 2024 Mar 4. Acta Biomater. 2024. PMID: 38447810
-
Biodegradable versus multiple plastic stent implantation in benign biliary strictures: A systematic review and meta-analysis.Eur J Radiol. 2020 Apr;125:108899. doi: 10.1016/j.ejrad.2020.108899. Epub 2020 Feb 13. Eur J Radiol. 2020. PMID: 32113154
-
Effect of Covered Metallic Stents Compared With Plastic Stents on Benign Biliary Stricture Resolution: A Randomized Clinical Trial.JAMA. 2016 Mar 22-29;315(12):1250-7. doi: 10.1001/jama.2016.2619. JAMA. 2016. PMID: 27002446 Free PMC article. Clinical Trial.
-
Role of fully covered self-expandable metal stent for treatment of benign biliary strictures and bile leaks.Korean J Radiol. 2012 Jan-Feb;13 Suppl 1(Suppl 1):S67-73. doi: 10.3348/kjr.2012.13.S1.S67. Epub 2012 Apr 23. Korean J Radiol. 2012. PMID: 22563290 Free PMC article. Review.
-
Self-Expandable Metallic Stent Is More Cost Efficient Than Plastic Stent in Treating Anastomotic Biliary Stricture.Dig Dis Sci. 2020 Feb;65(2):600-608. doi: 10.1007/s10620-019-05665-9. Epub 2019 May 18. Dig Dis Sci. 2020. PMID: 31104197
Cited by
-
Biliary stents for active materials and surface modification: Recent advances and future perspectives.Bioact Mater. 2024 Sep 13;42:587-612. doi: 10.1016/j.bioactmat.2024.08.031. eCollection 2024 Dec. Bioact Mater. 2024. PMID: 39314863 Free PMC article. Review.
-
Current Gallstone Treatment Methods, State of the Art.Diseases. 2024 Aug 26;12(9):197. doi: 10.3390/diseases12090197. Diseases. 2024. PMID: 39329866 Free PMC article. Review.
-
Towards a Customizable, SLA 3D-Printed Biliary Stent: Optimizing a Commercially Available Resin and Predicting Stent Behavior with Accurate In Silico Testing.Polymers (Basel). 2024 Jul 11;16(14):1978. doi: 10.3390/polym16141978. Polymers (Basel). 2024. PMID: 39065295 Free PMC article.
References
-
- a) Almeida G. G., Donato P., Eur. J. Radiol. 2020, 125, 108899; - PubMed
- b) Hu B., Sun B., Cai Q., Lau J. Y. W., Ma S., Itoi T., Moon J. H., Yasuda I., Zhang X., Wang H.‐P., Ryozawa S., Rerknimitr R., Li W., Kutsumi H., Lakhtakia S., Shiomi H., Ji M., Li X., Qian D., Yang Z., Zheng X., Gastrointest. Endosc. 2017; - PubMed
- c) Vitale G. C., Tran T. C., Davis B. R., Vitale M., Vitale D., Larson G., J. Am. Coll. Surg. 2008, 206, 918. - PubMed
-
- Ramchandani M., Lakhtakia S., Costamagna G., Tringali A., Püspöek A., Tribl B., Dolak W., Devière J., Arvanitakis M., van der Merwe S., Laleman W., Ponchon T., Lepilliez V., Gabbrielli A., Bernardoni L., Bruno M. J., Poley J. W., Arnelo U., Lau J., Roy A., Bourke M., Kaffes A., Neuhaus H., Peetermans J., Rousseau M., Reddy D. N., Gastroenterology 2021, 161, 185. - PubMed
-
- Kaffes A., Endoscopy 2019, 51, 1115. - PubMed
-
- Lawrence C., Romagnuolo J., Payne K. M., Hawes R. H., Cotton P. B., Gastrointest. Endosc. 2010, 72, 558. - PubMed
-
- Dumonceau J. M., Tringali A., Papanikolaou I. S., Blero D., Mangiavillano B., Schmidt A., Vanbiervliet G., Costamagna G., Devière J., García‐Cano J., Gyökeres T., Hassan C., Prat F., Siersema P. D., van Hooft J. E., Endoscopy 2018, 50, 910. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases