Convergent Deboronative and Decarboxylative Phosphonylation Enabled by the Phosphite Radical Trap "BecaP"
- PMID: 37552886
- PMCID: PMC10450818
- DOI: 10.1021/jacs.3c06524
Convergent Deboronative and Decarboxylative Phosphonylation Enabled by the Phosphite Radical Trap "BecaP"
Abstract
Carbon-phosphorus bond formation is significant in synthetic chemistry because phosphorus-containing compounds offer numerous indispensable biochemical roles. While there is a plethora of methods to access organophosphorus compounds, phosphonylations of readily accessible alkyl radicals to form aliphatic phosphonates are rare and not commonly used in synthesis. Herein, we introduce a novel phosphorus radical trap "BecaP" that enables facile and efficient phosphonylation of alkyl radicals under visible light photocatalytic conditions. Importantly, the ambiphilic nature of BecaP allows redox neutral reactions with both nucleophilic (activated by single-electron oxidation) and electrophilic (activated by single-electron reduction) alkyl radical precursors. Thus, a broad scope of feedstock alkyl potassium trifluoroborate salts and redox active carboxylate esters could be employed, with each class of substrate proceeding through a distinct mechanistic pathway. The mild conditions are applicable to the late-stage installation of phosphonate motifs into medicinal agents and natural products, which is showcased by the straightforward conversion of baclofen (muscle relaxant) to phaclofen (GABAB antagonist).
Conflict of interest statement
The authors declare no competing financial interest.
Figures



Similar articles
-
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp3)-H Cross-Coupling.Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29. Acc Chem Res. 2021. PMID: 33511841 Free PMC article.
-
Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.Infect Disord Drug Targets. 2013 Aug;13(4):217-77. doi: 10.2174/1871526513666131129155708. Infect Disord Drug Targets. 2013. PMID: 24304352 Review.
-
When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.Acc Chem Res. 2020 May 19;53(5):1066-1083. doi: 10.1021/acs.accounts.0c00090. Epub 2020 Apr 14. Acc Chem Res. 2020. PMID: 32286794
-
Three-component 1,2-dicarbofunctionalization of alkenes involving alkyl radicals.Chem Commun (Camb). 2022 Jan 18;58(6):730-746. doi: 10.1039/d1cc05730h. Chem Commun (Camb). 2022. PMID: 34931629 Review.
-
Decarboxylative Negishi Coupling of Redox-Active Aliphatic Esters by Cobalt Catalysis.Angew Chem Int Ed Engl. 2018 Oct 1;57(40):13096-13100. doi: 10.1002/anie.201806799. Epub 2018 Sep 4. Angew Chem Int Ed Engl. 2018. PMID: 30252190
Cited by
-
Photochemical phosphorus-enabled scaffold remodeling of carboxylic acids.Science. 2024 Sep 27;385(6716):1471-1477. doi: 10.1126/science.adr0771. Epub 2024 Sep 26. Science. 2024. PMID: 39325876
-
Small Molecule Catalyst for Peptide Synthesis.J Am Chem Soc. 2025 Jul 23;147(29):25682-25691. doi: 10.1021/jacs.5c07242. Epub 2025 Jul 14. J Am Chem Soc. 2025. PMID: 40658407 Free PMC article.
-
Synthesis of tertiary alkylphosphonate oligonucleotides through light-driven radical-polar crossover reactions.Nat Commun. 2023 Oct 31;14(1):6856. doi: 10.1038/s41467-023-42639-y. Nat Commun. 2023. PMID: 37907473 Free PMC article.
-
The key phosphorus moieties in drug design: antimicrobials and beyond.Future Med Chem. 2024;16(23):2455-2458. doi: 10.1080/17568919.2024.2423602. Epub 2024 Nov 19. Future Med Chem. 2024. PMID: 39560019 No abstract available.
-
Development of a General Organophosphorus Radical Trap: Deoxyphosphonylation of Alcohols.J Am Chem Soc. 2024 Mar 27;146(12):7942-7949. doi: 10.1021/jacs.4c00557. Epub 2024 Mar 12. J Am Chem Soc. 2024. PMID: 38470101 Free PMC article.
References
-
- Kolodiazhnyi O. I. Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application. Symmetry 2021, 13, 889.10.3390/sym13050889. - DOI
- Moonen K.; Laureyn I.; Stevens C. V. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity. Chem. Rev. 2004, 104, 6177–6216. 10.1021/cr030451c. - DOI - PubMed
- Papathanasiou K. E.; Vassaki M.; Spinthaki A.; Alatzoglou F.-E. G.; Tripodianos E.; Turhanen P.; Demadis K. D. Phosphorus Chemistry: From Small Molecules, to Polymers, to Pharmaceutical and Industrial applications. Pure Appl. Chem. 2019, 91, 421–441. 10.1515/pac-2018-1012. - DOI
-
- Rodriguez J. B.; Gallo-Rodriguez C. The Role of the Phosphorus Atom in Drug Design. ChemMedChem 2019, 14, 190–216. 10.1002/cmdc.201800693. - DOI - PubMed
- Yu H.; Yang H.; Shi E.; Tang W. Development and Clinical Application of Phosphorus-Containing Drugs. Med. Drug Discovery 2020, 8, 100063.10.1016/j.medidd.2020.100063. - DOI - PMC - PubMed
-
- Diana G. D.; Zalay E. S.; Salvador U. J.; Pancic F.; Steinberg B. Synthesis of Some Phosphonates with Antiherpetic Activity. J. Med. Chem. 1984, 27, 691–694. 10.1021/jm00371a024. - DOI - PubMed
- Matsumoto T.; Nagata N.; Horikoshi N.; Αdachi I.; Ohashi Y.; Ogata E. Comparative Study of Incadronate and Elcatonin in Patients with Malignancy-Associated Hypercalcaemia. J. Int. Med. Res. 2002, 30, 230–243. 10.1177/147323000203000303. - DOI - PubMed
- Kerr D. I. B.; Ong J.; Prager R. H.; Gynther B. D.; Curtis D. R. Phaclofen: A Peripheral and Central Baclofen Antagonist. Brain Res. 1987, 405, 150–154. 10.1016/0006-8993(87)90999-1. - DOI - PubMed
- Evans R. H.; Francis A. A.; Jones A. W.; Smith D. A. S.; Watkins J. C. The Effects of a Series Of ω-Phosphonic α-Carboxylic Amino Acids on Electrically Evoked and Excitant Amino Acid-Induced Responses in Isolated Spinal Cord Preparations. Br. J. Pharmacol. 1982, 75, 65–75. 10.1111/j.1476-5381.1982.tb08758.x. - DOI - PMC - PubMed
- Behrendt C. T.; Kunfermann A.; Illarionova V.; Matheeussen A.; Pein M. K.; Gräwert T.; Kaiser J.; Bacher A.; Eisenreich W.; Illarionov B.; Fischer M.; Maes L.; Groll M.; Kurz T. Reverse Fosmidomycin Derivatives against the Antimalarial Drug Target IspC (Dxr). J. Med. Chem. 2011, 54, 6796–6802. 10.1021/jm200694q. - DOI - PubMed
- Zhang N.; Casida J. E. Novel Irreversible Butyrylcholinesterase Inhibitors: 2-Chloro-1-(substituted-phenyl)ethylphosphonic Acids. Bioorg. Med. Chem. 2002, 10, 1281–1290. 10.1016/s0968-0896(01)00391-1. - DOI - PubMed
-
- Montchamp J.-L. Phosphinate Chemistry in the 21st Century: A Viable Alternative to the Use of Phosphorus Trichloride in Organophosphorus Synthesis. Acc. Chem. Res. 2014, 47, 77–87. 10.1021/ar400071v. - DOI - PubMed
- Demmer C. S.; Krogsgaard-Larsen N.; Bunch L. Review on Modern Advances of Chemical Methods for the Introduction of a Phosphonic Acid Group. Chem. Rev. 2011, 111, 7981–8006. 10.1021/cr2002646. - DOI - PubMed
-
- Kostoudi S.; Pampalakis G. Improvements, Variations and Biomedical Applications of the Michaelis–Arbuzov Reaction. Int. J. Mol. Sci. 2022, 23, 3395.10.3390/ijms23063395. - DOI - PMC - PubMed
- Oestreich M.; Tappe F.; Trepohl V. Transition-Metal-Catalyzed C–P Cross-Coupling Reactions. Synthesis 2010, 2010, 3037–3062. 10.1055/s-0030-1257960. - DOI
LinkOut - more resources
Full Text Sources