A dynamic simulation model of tissue growth and cell patterning
- PMID: 3755380
- DOI: 10.1016/0045-6039(86)90022-9
A dynamic simulation model of tissue growth and cell patterning
Abstract
The distributions of cells in tissues of experimental chimaeras and mosaics can serve as tests of mechanisms and rules by which single cells organize themselves into complex, multicellular structures during embryogenesis. We have devised a dynamic, computer simulation model of tissue growth and cell patterning which is directly applicable to the analysis of chimaeras and mosaics. In the model, schematized cells possess a small behavioral repertoire and simple rules for the carrying out of these behaviors. Populations of such cells evolve tissue patterns in real-time that are very similar to those seen in experimental animals. In particular, we have modeled the major pattern features seen in amphibian and mammalian eye chimaeras and mosaics. We have demonstrated that cell mixing can be a passive concomitant of interstitial cell division, a result which alleviates the need to postulate active cell mixing in such mammalian systems. We expect this approach to be a valuable addition to methods of pattern analysis in development.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources