PTSD Symptom dynamics after the great east japan earthquake: mapping the temporal structure using Dynamic Time Warping
- PMID: 37560810
- PMCID: PMC10416748
- DOI: 10.1080/20008066.2023.2241732
PTSD Symptom dynamics after the great east japan earthquake: mapping the temporal structure using Dynamic Time Warping
Abstract
Background: After the Great East Japan Earthquake [GEJE], approximately 70,000 Japan Ground Self Defense Force [JGSDF] personnel were deployed, risking Post-Traumatic Stress Disorder [PTSD]. The network approach to psychopathology suggests that symptoms may cause and exacerbate each other, resulting in the emergence and maintenance of disorders, including PTSD. It is therefore important to further explore the temporal interplay between symptoms. Most studies assessing the factor structure of the Impact of Event Scale-Revised [IES-R] have used cross-sectional designs. In this study, the structure of the IES-R was re-evaluated while incorporating the temporal interplay between symptoms.Methods: Using Dynamic Time Warping [DTW] the distances between PTSD symptoms on the IES-R were modelled in 1120 JGSDF personnel. Highly correlated symptoms were clustered at the group level using Distatis three-way principal component analyses of the distance matrices. The resulting clusters were compared to the original three subscales of the IES-R using a Confirmatory Factor Analysis (CFA).Results: The DTW analysis yielded four symptom clusters: Intrusion (five items), Hyperarousal (six items), Avoidance (six items), and Dissociation (five items). CFA yielded better fit estimates for this four-factor solution (RMSEA = 0.084, CFI = 0.918, TLI = 0.906), compared to the original three subscales of the IES-R (RMSEA = 0.103, CFI = 0.873, TLI = 0.858).Conclusions: DTW offers a new method of modelling the temporal relationships between symptoms. It yielded four IES-R symptom clusters, which may facilitate understanding of PTSD as a complex dynamic system.
Antecedentes: Después del Gran Terremoto del Este de Japón (GEJE, por sus siglas en inglés), se desplegaron aproximadamente 70,000 miembros de la Fuerza Terrestre de Autodefensa de Japón (JGSDF, por sus siglas en inglés), con el riesgo de sufrir un trastorno de estrés postraumático (TEPT). El enfoque de red de la psicopatología sugiere que los síntomas pueden causarse y exacerbarse entre sí, lo que da como resultado la aparición y el mantenimiento de trastornos, incluido el TEPT. Por lo tanto, es importante explorar más a fondo la interacción temporal entre los síntomas. La mayoría de los estudios que evalúan la estructura factorial de la escala Impact of Event Scale-Revised (IES-R) han utilizado diseños transversales. En este estudio, se reevaluó la estructura de la IES-R mientras se incorporaba la interacción temporal entre los síntomas.
Métodos: Usando la Deformación Dinámica del Tiempo (DTW por sus siglas en inglés), las distancias entre los síntomas de TEPT en la IES-R se modelaron en 1120 miembros del personal de la JGSDF. Los síntomas altamente correlacionados se agruparon a nivel de grupo utilizando análisis de componentes principales de tres vías DiSTATIS de las matrices de distancia. Los grupos resultantes se compararon con las tres subescalas originales de la IES-R utilizando un Análisis Factorial Confirmatorio (CFA).
Resultados: El análisis de DTW arrojó cuatro grupos de síntomas: intrusión (cinco elementos), hiperexcitación (seis elementos), evitación (seis elementos) y disociación (cinco elementos). El CFA produjo mejores estimaciones de ajuste para esta solución de cuatro factores (RMSEA = 0,084, CFI = 0,918, TLI = 0,906), en comparación con las tres subescalas originales de la IES-R (RMSEA = 0,103, CFI = 0,873, TLI = 0,858).
Conclusiones: La DTW ofrece un nuevo método para modelar las relaciones temporales entre los síntomas. Produjo cuatro grupos de síntomas de la IES-R, lo que puede facilitar la comprensión del TEPT como un sistema dinámico complejo.
背景 :东日本大地震(GEJE)后,部署了大约 70,000 名日本陆上自卫队人员 (JGSDF),冒着患上创伤后应激障碍(PTSD)的风险。心理病理学网络方法表明,症状可能相互引发和加剧,导致包括创伤后应激障碍(PTSD)在内的疾病的出现和维持。因此,进一步探讨症状之间的时间相互作用非常重要。 大多数评估事件影响量表修订版(IES-R)因子结构的研究都使用了横截面设计。 在本研究中,重新评估了 IES-R 的结构,同时纳入了症状之间的时间相互作用。
方法:使用动态时间规整(DTW),在 1120 名JGSDF中对 IES-R 上的 PTSD 症状之间的距离进行建模。使用距离矩阵的 Distatis 三向主成分分析,将高度相关的症状群体级别进行聚类。使用验证性因子分析 (CFA) 将所得聚类与 IES-R 的三个原始子量表进行比较。
结果 :DTW 分析得出四个症状簇:闯入(五个条目)、高唤起(六个条目)、回避(六个条目)和解离(五个条目)。 与 IES-R 的三个原始子量表(RMSEA = 0.103、CFI = 0.873、TLI = 0.858)相比,CFA 对该四因素解决方案产生了更好的拟合估计值(RMSEA = 0.084、CFI = 0.918、TLI = 0.906)。
结论:DTW 提供了一种对症状之间时间关系进行建模的新方法。它产生了四个 IES-R 症状簇,这可能有助于理解作为一个复杂动态系统的PTSD。
Keywords: Deformación dinámica del tiempo; Dinámica de síntomas; Disociación; Escala de Impacto del Evento revisada; PTSD; Redes; TEPT; dissociation; dynamic time warping; impact of event scale-revised; networks; symptom dynamics; 事件影响量表修订版; 动态时间规整; 症状动态; 网络; 解离.
Plain language summary
Personnel from the Japan Ground Self-Defense Force responded to the aftermath of the 2011 Great East Japan Earthquake, putting them at increased risk of developing symptoms of Post-Traumatic Stress Disorder.In recent years, psychological research has focused increasingly on methods to map the ways in which symptoms of psychopathology cause and exacerbate each other.The Dynamic Time Warping algorithm seems to be an appropriate and useful tool to analyse the interaction between post-traumatic stress symptoms over time, especially if these are not instantaneous or linear. This can improve our understanding of psychopathology and help move towards personalized medicine.
Conflict of interest statement
No potential conflict of interest was reported by the author(s).
Figures




Similar articles
-
Dynamic time warping network analysis of posttraumatic stress symptoms in Japanese first responders.Eur J Psychotraumatol. 2025 Dec;16(1):2528313. doi: 10.1080/20008066.2025.2528313. Epub 2025 Jul 28. Eur J Psychotraumatol. 2025. PMID: 40717645 Free PMC article.
-
Leg extension power is a pre-disaster modifiable risk factor for post-traumatic stress disorder among survivors of the Great East Japan Earthquake: a retrospective cohort study.PLoS One. 2014 Apr 23;9(4):e96131. doi: 10.1371/journal.pone.0096131. eCollection 2014. PLoS One. 2014. PMID: 24760054 Free PMC article.
-
Sex differences in post-traumatic stress disorder in cardiovascular patients after the Great East Japan Earthquake: a report from the CHART-2 Study.Eur Heart J Qual Care Clin Outcomes. 2017 Jul 1;3(3):224-233. doi: 10.1093/ehjqcco/qcx009. Eur Heart J Qual Care Clin Outcomes. 2017. PMID: 28838093
-
Psychological trauma after the Great East Japan Earthquake.Psychiatry Clin Neurosci. 2016 Aug;70(8):318-31. doi: 10.1111/pcn.12403. Epub 2016 Jun 28. Psychiatry Clin Neurosci. 2016. PMID: 27192947 Review.
-
[Posttraumatic stress disorder (PTSD) as a consequence of the interaction between an individual genetic susceptibility, a traumatogenic event and a social context].Encephale. 2012 Oct;38(5):373-80. doi: 10.1016/j.encep.2011.12.003. Epub 2012 Jan 24. Encephale. 2012. PMID: 23062450 Review. French.
Cited by
-
Understanding Personalized Dynamics in Eating Disorders: A Dynamic Time Warp Analysis.Int J Eat Disord. 2025 Jun;58(6):1048-1059. doi: 10.1002/eat.24407. Epub 2025 Mar 13. Int J Eat Disord. 2025. PMID: 40079172 Free PMC article.
-
Temporal dynamics of depressive symptoms and cognitive decline in the oldest old: dynamic time warp analysis of the Leiden 85-plus study.Age Ageing. 2024 Jul 2;53(7):afae130. doi: 10.1093/ageing/afae130. Age Ageing. 2024. PMID: 38952188 Free PMC article.
-
Taking a trauma and adversity perspective to climate change mental health.Eur J Psychotraumatol. 2024;15(1):2343509. doi: 10.1080/20008066.2024.2343509. Epub 2024 Apr 24. Eur J Psychotraumatol. 2024. PMID: 38655669 Free PMC article.
-
Dynamic time warping network analysis of posttraumatic stress symptoms in Japanese first responders.Eur J Psychotraumatol. 2025 Dec;16(1):2528313. doi: 10.1080/20008066.2025.2528313. Epub 2025 Jul 28. Eur J Psychotraumatol. 2025. PMID: 40717645 Free PMC article.
-
Dynamic time warp versus vector autoregression models for network analyses of psychological processes.Sci Rep. 2025 Apr 5;15(1):11720. doi: 10.1038/s41598-025-94782-9. Sci Rep. 2025. PMID: 40188226 Free PMC article.
References
-
- Abdi, H., O'Toole, A. J., Valentin, D., & Edelman, B. (2005). DISTATIS: The analysis of multiple distance matrices. Paper Presented at the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)-Workshops.
-
- Abdi, H., Williams, L. J., Valentin, D., & Bennani-Dosse, M. (2012). STATIS and DISTATIS: Optimum multitable principal component analysis and three way metric multidimensional scaling. WIRES Computational Statistics, 4(2), 124–167. 10.1002/wics.198 - DOI
-
- American Psychiatric Association . (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). 10.1176/appi.books.9780890425596 - DOI
-
- Amin, T. B., & Mahmood, I. (2008). Speech recognition using dynamic time warping. Paper Presented at the 2008 2nd International Conference on Advances in Space technologies.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous