Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Oct 9;861(2):319-30.
doi: 10.1016/0005-2736(86)90434-7.

Polylysine induces pH-dependent fusion of acidic phospholipid vesicles: a model for polycation-induced fusion

Polylysine induces pH-dependent fusion of acidic phospholipid vesicles: a model for polycation-induced fusion

A Walter et al. Biochim Biophys Acta. .

Abstract

Polylysine induced aggregation and fusion of negatively charged small unilamellar phosphatidylcholine vesicles containing at least 10% anionic lipid. Aggregation was followed by absorbance changes and fusion was assayed both by electron microscopy and by fluorescence energy transfer between lipid probes. A method for preparing asymmetric vesicles, where the fluorescent probes were present only in the inner monolayer of the vesicle membrane, was developed. These vesicles were used to distinguish the inner and outer monolayer when measuring lipid mixing between vesicles. Since polylysine induced lipid mixing of both monolayers equally, fusion of these vesicles did occur. The extent of fusion was dependent on the charge ratio between bound polylysine and phosphatidylserine (PS) in the outer monolayer and was optimal at a ratio of about 1:1. Excess polylysine inhibited fusion. At a given concentration of polypeptide, fusion increased as the pH was lowered toward 3 with an apparent pKa near 4. Since this value is close to the pKa of the PS-carboxyl groups and far from the pKa of the lysine epsilon-amino groups, the pH dependence observed for fusion resides in the lipids rather than in the peptide. Fusion was dependent on the available lysine and not the size or molarity of the polypeptide. The data indicate that there must be sufficient sites on the vesicles and sufficient polypeptide to achieve effective aggregation. For fusion to occur after aggregation, charges on the vesicles must be neutralized either by polypeptide-PS interaction or by protonation of the PS carboxyl groups. Optimal conditions for fusion occur when charge neutralization is possible without completely covering the vesicles with polypeptide. The results are consistent with the notion that the polypeptide is necessary for fusion because of requirements for crosslinking, but limits fusion by steric inhibition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources