Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep 12;878(2):209-15.
doi: 10.1016/0005-2760(86)90148-7.

Bile salt-stimulated lipase in non-primate milk: longitudinal variation and lipase characteristics in cat and dog milk

Free article

Bile salt-stimulated lipase in non-primate milk: longitudinal variation and lipase characteristics in cat and dog milk

L M Freed et al. Biochim Biophys Acta. .
Free article

Abstract

We report the presence of bile salt-stimulated lipase in milk collected from dog and cat. This enzyme has previously been found only in the milk of human and gorilla. Bile salt-stimulated lipase activity in individual dog milk specimens (range: 4.8-107.4 U/ml; 1 U = 1 mumol [3H]oleic acid released/min) was similar, while that in cat milk specimens (range: 2.2-16.9 U/ml) was lower than in human milk (range: 10-80 U/ml). Longitudinal patterns for bile salt-stimulated lipase activity differed depending upon the enzyme source: in dog milk, lipase activity was lowest in colostrum, while in cat milk, lipase activity was highest in colostrum and decreased at mid-lactation. In human milk, bile salt-stimulated lipase activity levels remain fairly constant throughout the first 3 months of lactation. Dog, cat and human milk bile salt-stimulated lipase activity had a neutral-to-alkaline pH optimum of 7.3-8.5, was stable at low pH (above 3.0 for at least 1 h), and was inhibited 95-100% by eserine (at concentrations greater than 0.6 mM). The lipase in the milk of the three species studied had an absolute requirement for primary bile salts (tauro- and glycocholate), and was inhibited by secondary bile salts (tauro- and glycodeoxycholate). These data are the first to report bile salt-stimulated lipase activity in milk from mammals other than the highest primates. Presence of this lipase in non-primate milk will permit the study of the factors that regulate the ontogeny, synthesis and secretion of the enzyme during pregnancy and lactation as well as its function in neonatal fat digestion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources