Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Oct 1;883(3):531-41.
doi: 10.1016/0304-4165(86)90294-1.

Importance of endogenous substrates for cultured adult rat cardiac myocytes

Importance of endogenous substrates for cultured adult rat cardiac myocytes

H M Piper et al. Biochim Biophys Acta. .

Abstract

In Ca-tolerant adult cardiomyocytes the contribution of endogenous substrates (glycogen, tri- and diacylglycerol) to oxidative substrate metabolism was investigated. After 4 h in culture medium (M 199 plus 4% fetal calf serum) the cellular triacylglycerol content is 3.6-fold higher than in fresh myocardium and reflects the free fatty acid composition of the medium. When triacylglycerol is degraded, all long-chain fatty acids are hydrolysed at equal rates. In these quiescent cells, the activity of pyruvate dehydrogenase is low (10% of full activity, in Tyrode solution with 5 mM glucose). Up to 30% of full pyruvate dehydrogenase activity, the contribution of non-lipid substrates (glycogen, glucose, lactate and pyruvate) to oxidative energy production is correlated to pyruvate dehydrogenase activity. At 5 mM medium concentration, glucose, lactate and pyruvate share in energy production the proportions of 15, 36 and 50%, whereas endogenous lipolysis accounts for 78, 61 and 46%. It is concluded that these quiescent cardiomyocytes represent cardiac metabolism in a basal state in which the preference for fatty acids, especially from endogenous lipids, is very pronounced. The utilization of endogenous substrates therefore has to be considered in all studies investigating the oxidative metabolism of these isolated cells.

PubMed Disclaimer

Publication types

LinkOut - more resources