Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep:164:107269.
doi: 10.1016/j.compbiomed.2023.107269. Epub 2023 Jul 18.

Dual-path multi-scale context dense aggregation network for retinal vessel segmentation

Affiliations

Dual-path multi-scale context dense aggregation network for retinal vessel segmentation

Wei Zhou et al. Comput Biol Med. 2023 Sep.

Abstract

There has been steady progress in the field of deep learning-based blood vessel segmentation. However, several challenging issues still continue to limit its progress, including inadequate sample sizes, the neglect of contextual information, and the loss of microvascular details. To address these limitations, we propose a dual-path deep learning framework for blood vessel segmentation. In our framework, the fundus images are divided into concentric patches with different scales to alleviate the overfitting problem. Then, a Multi-scale Context Dense Aggregation Network (MCDAU-Net) is proposed to accurately extract the blood vessel boundaries from these patches. In MCDAU-Net, a Cascaded Dilated Spatial Pyramid Pooling (CDSPP) module is designed and incorporated into intermediate layers of the model, enhancing the receptive field and producing feature maps enriched with contextual information. To improve segmentation performance for low-contrast vessels, we propose an InceptionConv (IConv) module, which can explore deeper semantic features and suppress the propagation of non-vessel information. Furthermore, we design a Multi-scale Adaptive Feature Aggregation (MAFA) module to fuse the multi-scale feature by assigning adaptive weight coefficients to different feature maps through skip connections. Finally, to explore the complementary contextual information and enhance the continuity of microvascular structures, a fusion module is designed to combine the segmentation results obtained from patches of different sizes, achieving fine microvascular segmentation performance. In order to assess the effectiveness of our approach, we conducted evaluations on three widely-used public datasets: DRIVE, CHASE-DB1, and STARE. Our findings reveal a remarkable advancement over the current state-of-the-art (SOTA) techniques, with the mean values of Se and F1 scores being an increase of 7.9% and 4.7%, respectively. The code is available at https://github.com/bai101315/MCDAU-Net.

Keywords: Context information; Dual-path fusion; Fundus image; Multi-scale fusion; Vessel segmentation.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest We wish to confirm that there are no known conflicts of interest associated with the manuscript submitted to Computers in Biology and Medicine and there has been no significant financial support for this work that could have influenced its outcome.

Similar articles

Cited by

Publication types

LinkOut - more resources