Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 4;16(9):1379-1395.
doi: 10.1016/j.molp.2023.08.004. Epub 2023 Aug 10.

RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota

Affiliations
Free article

RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota

Keming Yang et al. Mol Plant. .
Free article

Abstract

The RIPENING-INHIBITOR (RIN) transcriptional factor is a key regulator governing fruit ripening. While RIN also affects other physiological processes, its potential roles in triggering interactions with the rhizosphere microbiome and plant health are unknown. Here we show that RIN affects microbiome-mediated disease resistance via root exudation, leading to recruitment of microbiota that suppress the soil-borne, phytopathogenic Ralstonia solanacearum bacterium. Compared with the wild-type (WT) plant, RIN mutants had different root exudate profiles, which were associated with distinct changes in microbiome composition and diversity. Specifically, the relative abundances of antibiosis-associated genes and pathogen-suppressing Actinobacteria (Streptomyces) were clearly lower in the rhizosphere of rin mutants. The composition, diversity, and suppressiveness of rin plant microbiomes could be restored by the application of 3-hydroxyflavone and riboflavin, which were exuded in much lower concentrations by the rin mutant. Interestingly, RIN-mediated effects on root exudates, Actinobacteria, and disease suppression were evident from the seedling stage, indicating that RIN plays a dual role in the early assembly of disease-suppressive microbiota and late fruit development. Collectively, our work suggests that, while plant disease resistance is a complex trait driven by interactions between the plant, rhizosphere microbiome, and the pathogen, it can be indirectly manipulated using "prebiotic" compounds that promote the recruitment of disease-suppressive microbiota.

Keywords: bacterial wilt; disease-suppressive microbiota; plant-microbe interactions; rhizosphere immunity; rhizosphere microbiome; tomato root exudates.

PubMed Disclaimer

Publication types

LinkOut - more resources