The Electrical Behaviors of Grain Boundaries in Polycrystalline Optoelectronic Materials
- PMID: 37572037
- DOI: 10.1002/adma.202304855
The Electrical Behaviors of Grain Boundaries in Polycrystalline Optoelectronic Materials
Abstract
Polycrystalline optoelectronic materials are widely used for photoelectric signal conversion and energy harvesting and play an irreplaceable role in the semiconductor field. As an important factor in determining the optoelectronic properties of polycrystalline materials, grain boundaries (GBs) are the focus of research. Particular emphases are placed on the generation and height of GB barriers, how carriers move at GBs, whether GBs act as carrier transport channels or recombination sites, and how to change the device performance by altering the electrical behaviors of GBs. This review introduces the evolution of GB theory and experimental observation history, classifies GB electrical behaviors from the perspective of carrier dynamics, and summarizes carrier transport state under external conditions such as bias and illumination and the related band bending. Then the carrier scattering at GBs and the electrical differences between GBs and twin boundaries are discussed. Last, the review describes how the electrical behaviors of GBs can be influenced and modified by treatments such as passivation or by consciously adjusting the distribution of grain boundary elements. By studying the carrier dynamics and the relevant electrical behaviors of GBs in polycrystalline materials, researchers can develop optoelectronics with higher performance.
Keywords: grain boundaries; optoelectronics; polycrystalline materials; potential barrier; twin boundaries.
© 2023 Wiley-VCH GmbH.
Similar articles
-
Identification the Role of Grain Boundaries in Polycrystalline Photovoltaics via Advanced Atomic Force Microscope.Small. 2024 Feb;20(5):e2304362. doi: 10.1002/smll.202304362. Epub 2023 Sep 26. Small. 2024. PMID: 37752782 Review.
-
Grain Boundaries as Electrical Conduction Channels in Polycrystalline Monolayer WS2.ACS Appl Mater Interfaces. 2019 Mar 13;11(10):10189-10197. doi: 10.1021/acsami.8b21391. Epub 2019 Feb 28. ACS Appl Mater Interfaces. 2019. PMID: 30817114
-
Electrically benign behavior of grain boundaries in polycrystalline CuInSe2 films.Phys Rev Lett. 2007 Dec 7;99(23):235504. doi: 10.1103/PhysRevLett.99.235504. Epub 2007 Dec 7. Phys Rev Lett. 2007. PMID: 18233382
-
Linking Macroscopic and Nanoscopic Ionic Conductivity: A Semiempirical Framework for Characterizing Grain Boundary Conductivity in Polycrystalline Ceramics.ACS Appl Mater Interfaces. 2020 Jan 8;12(1):507-517. doi: 10.1021/acsami.9b15933. Epub 2019 Dec 19. ACS Appl Mater Interfaces. 2020. PMID: 31800213
-
Recent progress in the role of grain boundaries in two-dimensional transition metal dichalcogenides studied using scanning tunneling microscopy/spectroscopy.Appl Microsc. 2023 Jul 17;53(1):5. doi: 10.1186/s42649-023-00088-3. Appl Microsc. 2023. PMID: 37458942 Free PMC article. Review.
Cited by
-
Surface Defects Control Bulk Carrier Densities in Polycrystalline Pb-Halide Perovskites.Adv Mater. 2024 Dec;36(50):e2407098. doi: 10.1002/adma.202407098. Epub 2024 Oct 31. Adv Mater. 2024. PMID: 39479729 Free PMC article.
-
Emerging Thermal Detectors Based on Low-Dimensional Materials: Strategies and Progress.Nanomaterials (Basel). 2025 Mar 18;15(6):459. doi: 10.3390/nano15060459. Nanomaterials (Basel). 2025. PMID: 40137632 Free PMC article. Review.
References
-
- G. S. Rohrer, J. Mater. Sci. 2021, 46, 5881.
-
- S. K. Samji, M. S. Ramachandra Rao, Scr. Mater. 2021, 194, 113605.
-
- S. Łoś, K. Fabisiak, K. Paprocki, M. Szybowicz, Sensors 2021, 21, 6113.
-
- G. S. Rohrer, J. Mater. Sci. 2011, 46, 5881.
-
- G. W. P. Adhyaksa, S. Brittman, H. Āboliņš, A. Lof, X. Li, J. D. Keelor, Y. Luo, T. Duevski, R. M. A. Heeren, S. R. Ellis, D. P. Fenning, E. C. Garnett, Adv. Mater. 2018, 30, 1804792.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials