Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2024 Feb;39(2):379-386.e2.
doi: 10.1016/j.arth.2023.08.018. Epub 2023 Aug 11.

Development and Validation of an Automated Classification System for Osteonecrosis of the Femoral Head Using Deep Learning Approach: A Multicenter Study

Affiliations
Multicenter Study

Development and Validation of an Automated Classification System for Osteonecrosis of the Femoral Head Using Deep Learning Approach: A Multicenter Study

Xianyue Shen et al. J Arthroplasty. 2024 Feb.

Abstract

Background: Accurate classification can facilitate the selection of appropriate interventions to delay the progression of osteonecrosis of the femoral head (ONFH). This study aimed to perform the classification of ONFH through a deep learning approach.

Methods: We retrospectively sampled 1,806 midcoronal magnetic resonance images (MRIs) of 1,337 hips from 4 institutions. Of these, 1,472 midcoronal MRIs of 1,155 hips were divided into training, validation, and test datasets with a ratio of 7:1:2 to develop a convolutional neural network model (CNN). An additional 334 midcoronal MRIs of 182 hips were used to perform external validation. The predictive performance of the CNN and the review panel was also compared.

Results: A multiclass CNN model was successfully developed. In internal validation, the overall accuracy of the CNN for predicting the severity of ONFH based on the Japanese Investigation Committee classification was 87.8%. The macroaverage values of area under the curve (AUC), precision, recall, and F-value were 0.90, 84.8, 84.8, and 84.6%, respectively. In external validation, the overall accuracy of the CNN was 83.8%. The macroaverage values of area under the curve, precision, recall, and F-value were 0.87, 79.5, 80.5, and 79.9%, respectively. In a human-machine comparison study, the CNN outperformed or was comparable to that of the deputy chief orthopaedic surgeons.

Conclusion: The CNN is feasible and robust for classifying ONFH and correctly locating the necrotic area. These findings suggest that classifying ONFH using deep learning with high accuracy and generalizability may aid in predicting femoral head collapse and clinical decision-making.

Keywords: Osteonecrosis of the femoral head; classification; deep learning; musculoskeletal disorder.

PubMed Disclaimer

References

Publication types

LinkOut - more resources