Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 27:14:1203655.
doi: 10.3389/fpsyt.2023.1203655. eCollection 2023.

Cognitive subgroups and the relationships with symptoms, psychosocial functioning and quality of life in first-episode non-affective psychosis: a cluster-analysis approach

Affiliations

Cognitive subgroups and the relationships with symptoms, psychosocial functioning and quality of life in first-episode non-affective psychosis: a cluster-analysis approach

Candice Tze Kwan Kam et al. Front Psychiatry. .

Abstract

Introduction: Prior research examining cognitive heterogeneity in psychotic disorders primarily focused on chronic schizophrenia, with limited data on first-episode psychosis (FEP). We aimed to identify distinct cognitive subgroups in adult FEP patients using data-driven cluster-analytic approach, and examine relationships between cognitive subgroups and a comprehensive array of illness-related variables.

Methods: Two-hundred-eighty-nine Chinese patients aged 26-55 years presenting with FEP to an early intervention program in Hong Kong were recruited. Assessments encompassing premorbid adjustment, illness-onset profile, symptom severity, psychosocial functioning, subjective quality-of-life, and a battery of cognitive tests were conducted. Hierarchical cluster-analysis was employed, optimized with k-means clustering and internally-validated by discriminant-functional analysis. Cognitive subgroup comparisons in illness-related variables, followed by multivariable multinominal-regression analyzes were performed to identify factors independently predictive of cluster membership.

Results: Three clusters were identified including patients with globally-impaired (n = 101, 34.9%), intermediately-impaired (n = 112, 38.8%) and relatively-intact (n = 76, 26.3%) cognition (GIC, IIC and RIC subgroups) compared to demographically-matched healthy-controls' performance (n = 50). GIC-subgroup was older, had lower educational attainment, greater positive, negative and disorganization symptom severity, poorer insight and quality-of-life than IIC- and RIC-subgroups, and higher antipsychotic-dose than RIC-subgroup. IIC-subgroup had lower education levels and more severe negative symptoms than RIC-subgroup, which had better psychosocial functioning than two cognitively-impaired subgroups. Educational attainment and disorganization symptoms were found to independently predict cluster membership.

Discussion: Our results affirmed cognitive heterogeneity in FEP and identified three subgroups, which were differentially associated with demographic and illness-related variables. Further research should clarify longitudinal relationships of cognitive subgroups with clinical and functional outcomes in FEP.

Keywords: cognitive clusters; cognitive heterogeneity; cognitive impairment; first-episode psychosis; functional outcome.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Discriminant plot of k-means three-cluster solution. The three clusters are (1) globally-impaired cluster, (2) intermediately-impaired cluster, and (3) relatively-intact clusters.
Figure 2
Figure 2
Cognitive performance among three cognitive clusters on each of the cognitive measures.

References

    1. Harvey PD, Bosia M, Cavallaro R, Howes OD, Kahn RS, Leucht S, et al. . Cognitive dysfunction in schizophrenia: an expert group paper on the current state of the art. Schizophr Res Cogn. (2022) 29:100249. doi: 10.1016/j.scog.2022.100249 - DOI - PMC - PubMed
    1. McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry. (2023). doi: 10.1038/s41380-023-01949-9, PMID: - DOI - PMC - PubMed
    1. Green MF, Kern RS, Braff DL, Mintz J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophr Bull. (2000) 26:119–36. doi: 10.1093/oxfordjournals.schbul.a033430, PMID: - DOI - PubMed
    1. Harvey PD, Strassnig M. Predicting the severity of everyday functional disability in people with schizophrenia: cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry. (2012) 11:73–9. doi: 10.1016/j.wpsyc.2012.05.004, PMID: - DOI - PMC - PubMed
    1. Gebreegziabhere Y, Habatmu K, Mihretu A, Cella M, Alem A. Cognitive impairment in people with schizophrenia: an umbrella review. Eur Arch Psychiatry Clin Neurosci. (2022) 272:1139–55. doi: 10.1007/s00406-022-01416-6, PMID: - DOI - PMC - PubMed

LinkOut - more resources