Intrapatient comparison of atopic dermatitis skin transcriptome shows differences between tape-strips and biopsies
- PMID: 37577841
- DOI: 10.1111/all.15845
Intrapatient comparison of atopic dermatitis skin transcriptome shows differences between tape-strips and biopsies
Abstract
Background: Our knowledge of etiopathogenesis of atopic dermatitis (AD) is largely derived from skin biopsies, which are associated with pain, scarring and infection. In contrast, tape-stripping is a minimally invasive, nonscarring technique to collect skin samples.
Methods: To construct a global AD skin transcriptomic profile comparing tape-strips to whole-skin biopsies, we performed RNA-seq on tape-strips and biopsies taken from the lesional skin of 20 moderate-to-severe AD patients and the skin of 20 controls. Differentially expressed genes (DEGs) were defined by fold-change (FCH) ≥2.0 and false discovery rate <0.05.
Results: We detected 4104 (2513 Up; 1591 Down) and 1273 (546 Up; 727 Down) DEGs in AD versus controls, in tape-strips and biopsies, respectively. Although both techniques captured dysregulation of key immune genes, tape-strips showed higher FCHs for innate immunity (IL-1B, IL-8), dendritic cell (ITGAX/CD11C, FCER1A), Th2 (IL-13, CCL17, TNFRSF4/OX40), and Th17 (CCL20, CXCL1) products, while biopsies showed higher upregulation of Th22 associated genes (IL-22, S100As) and dermal cytokines (IFN-γ, CCL26). Itch-related genes (IL-31, TRPV3) were preferentially captured by tape-strips. Epidermal barrier abnormalities were detected in both techniques, with terminal differentiation defects (FLG2, PSORS1C2) better represented by tape-strips and epidermal hyperplasia changes (KRT16, MKI67) better detected by biopsies.
Conclusions: Tape-strips and biopsies capture overlapping but distinct features of the AD molecular signature, suggesting their respective utility for monitoring specific AD-related immune, itch, and barrier abnormalities in clinical trials and longitudinal studies.
Keywords: atopic dermatitis; biopsies; immune; pruritus; tape-strips.
© 2023 European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
References
REFERENCES
-
- Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. J Allergy Clin Immunol. 2013;132(5):1132-1138.
-
- Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab. 2015;66(Suppl 1):8-16.
-
- Suárez-Fariñas M, Ungar B, Correa da Rosa J, et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015;135(5):1218-1227.
-
- Sanyal RD, Pavel AB, Glickman J, et al. Atopic dermatitis in African American patients is T(H)2/T(H)22-skewed with T(H)1/T(H)17 attenuation. Ann Allergy Asthma Immunol. 2019;122(1):99-110.e6.
-
- Nomura I, Gao B, Boguniewicz M, Darst MA, Travers JB, Leung DY. Distinct patterns of gene expression in the skin lesions of atopic dermatitis and psoriasis: a gene microarray analysis. J Allergy Clin Immunol. 2003;112(6):1195-1202.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous