Editorial for "3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation"
- PMID: 37578324
- DOI: 10.1002/jmri.28957
Editorial for "3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation"
Comment on
-
3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation.J Magn Reson Imaging. 2024 Jun;59(6):2252-2262. doi: 10.1002/jmri.28960. Epub 2023 Aug 19. J Magn Reson Imaging. 2024. PMID: 37596823
References
-
- Mann RM, Cho N, Moy L. Breast MRI: State of the art. Radiology 2019;292(3):520‐536.
-
- Marino MA, Helbich T, Baltzer P, Pinker‐Domenig K. Multiparametric MRI of the breast: A review. J Magn Reson Imaging 2018;47(2):301‐315.
-
- Khaled R, Vidal J, Vilanova JC, Martí R. A U‐Net ensemble for breast lesion segmentation in DCE MRI. Comput Biol Med 2021;140:105093.
-
- Hatamizadeh A, Yang D, Roth HR, Xu D. UNETR: Transformers for 3D medical image segmentation. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021;1748–1758.
-
- Park GE, Kim SH, Nam Y, Kang J, Park M, Kang BJ. 3D breast cancer segmentation in DCE‐MRI using deep learning with weak annotation. J Magn Reson Imaging 2024;59:2252‐2262.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical