Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 23;23(16):7493-7499.
doi: 10.1021/acs.nanolett.3c02001. Epub 2023 Aug 14.

Light-Emitting Electrochemical Cells Based on Nanogap Electrodes

Affiliations

Light-Emitting Electrochemical Cells Based on Nanogap Electrodes

Ryo Yonemoto et al. Nano Lett. .

Abstract

In a light-emitting electrochemical cell (LEC), electrochemical doping caused by mobile ions facilitates bipolar charge injection and recombination emissions for a high electroluminescence (EL) intensity at low driving voltages. We present the development of a nanogap LEC (i.e., nano-LEC) comprising a light-emitting polymer (F8BT) and an ionic liquid deposited on a gold nanogap electrode. The device demonstrated a high EL intensity at a wavelength of 540 nm corresponding to the emission peak of F8BT and a threshold voltage of ∼2 V at 300 K. Upon application of a constant voltage, the device demonstrated a gradual increase in current intensity followed by light emission. Notably, the delayed components of the current and EL were strongly suppressed at low temperatures (<285 K). The results clearly indicate that the device functions as an LEC and that the nano-LEC is a promising approach to realizing molecular-scale current-induced light sources.

Keywords: Molecular electronics; light-emitting electrochemical cells; nanogap electrode; nanoscale optoelectronics.

PubMed Disclaimer

LinkOut - more resources