Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov:241:107761.
doi: 10.1016/j.cmpb.2023.107761. Epub 2023 Aug 10.

Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue

Affiliations

Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue

Datao Xu et al. Comput Methods Programs Biomed. 2023 Nov.

Abstract

Background and objective: As a fundamental exercise technique, landing can commonly be associated with anterior cruciate ligament (ACL) injury, especially during after-fatigue single-leg landing (SL). Presently, the inability to accurately detect ACL loading makes it difficult to recognize the risk degree of ACL injury, which reduces the effectiveness of injury prevention and sports monitoring. Increased risk of ACL injury during after-fatigue SL may be related to changes in ankle motion patterns. Therefore, this study aims to develop a highly accurate and easily implemented ACL force prediction model by combining deep learning and the explored relationship between ACL force and ankle motion pattern.

Methods: First, 56 subjects' during before and after-fatigue SL data were collected to explore the relationship between the ankle initial contact angle (AIC), ankle range of motion (AROM) and peak ACL force (PAF). Then, the musculoskeletal model was developed to simulate and calculate the ACL force. Finally, the ACL force prediction model was constructed by combining the explored relationship and sparrow search algorithm (SSA) to optimize the extreme learning machine (ELM) and long short-term memory (LSTM).

Results: There was almost a stronger linear relationship between the PAF and AIC (R = -0.70), AROM (R2 = -0.61). By substituting AIC and AROM as independent variables in the SSA-ELM prediction model, the model shows excellent prediction performance because of very strong correlation (R2 = 0.9992, MSE = 0.0023, RMSE = 0.0474). Based on the equal scaling by combining results of SSA-ELM and SSA-LSTM, the prediction model achieves excellent performance in ACL force prediction of the overall waveform (R2 = 0.9947, MSE = 0.0076, RMSE = 0.0873).

Conclusion: By increasing the AIC and AROM during SL, the lower limb joint energy dissipation can be increased and the PAF reduced, thus reducing the impact loads on the lower limb joints and reducing ACL injuries. The proposed ACL dynamic load force prediction model has low input variable demands (sagittal joint angles), excellent generalization capabilities and superior performance in terms of high accuracy. In the future, we plan to use it as an accurate ACL injury risk assessment tool to promote and apply it to a wider range of sports training and injury monitoring.

Keywords: ACL force prediction; Ankle motion patterns; Landing biomechanics; Machine learning; Musculoskeletal modeling; Optimization model.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled,

LinkOut - more resources