Allosteric modulation of SHP2: Quest from known to unknown
- PMID: 37583266
- DOI: 10.1002/ddr.22100
Allosteric modulation of SHP2: Quest from known to unknown
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) is a key regulatory factor in the cell cycle and its activating mutations play an important role in the development of various cancers, making it an important target for antitumor drugs. Due to the highly conserved amino acid sequence and positively charged nature of the active site of SHP2, it is difficult to discover inhibitors with high affinity for the catalytic site of SHP2 and sufficient cell permeability, making it considered an "undruggable" target. However, the discovery of allosteric regulation mechanisms provides new opportunities for transforming undruggable targets into druggable ones. Given the limitations of orthosteric inhibitors, SHP2 allosteric inhibitors have become a more selective and safer research direction. In this review, we elucidate the oncogenic mechanism of SHP2 and summarize the discovery methods of SHP2 allosteric inhibitors, providing new strategies for the design and improvement of SHP2 allosteric inhibitors.
Keywords: SHP2's inhibitors; allosteric drugs; allosteric regulation; protein tyrosine phosphatase.
© 2023 Wiley Periodicals LLC.
Similar articles
-
Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2.Biochemistry. 2015 Jan 20;54(2):497-504. doi: 10.1021/bi5013595. Epub 2015 Jan 2. Biochemistry. 2015. PMID: 25519989 Free PMC article.
-
Study on SHP2 Conformational Transition and Structural Characterization of Its High-Potency Allosteric Inhibitors by Molecular Dynamics Simulations Combined with Machine Learning.Molecules. 2024 Dec 24;30(1):14. doi: 10.3390/molecules30010014. Molecules. 2024. PMID: 39795072 Free PMC article.
-
Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases.Bioorg Med Chem. 2015 Jun 15;23(12):2828-38. doi: 10.1016/j.bmc.2015.03.027. Epub 2015 Mar 17. Bioorg Med Chem. 2015. PMID: 25828055 Free PMC article.
-
Recent Advances of SHP2 Inhibitors in Cancer Therapy: Current Development and Clinical Application.J Med Chem. 2020 Oct 22;63(20):11368-11396. doi: 10.1021/acs.jmedchem.0c00249. Epub 2020 Jun 10. J Med Chem. 2020. PMID: 32460492 Review.
-
Allosteric Inhibitors of SHP2: An Updated Patent Review (2015-2020).Curr Med Chem. 2021;28(19):3825-3842. doi: 10.2174/1568011817666200928114851. Curr Med Chem. 2021. PMID: 32988341 Review.
Cited by
-
Synthetic Lethality of SHP2 and XIAP Suppresses Proliferation and Metastasis in KRAS-mutant Nonsmall Cell Lung Cancer.Adv Sci (Weinh). 2025 Apr;12(15):e2411642. doi: 10.1002/advs.202411642. Epub 2025 Feb 24. Adv Sci (Weinh). 2025. PMID: 39992860 Free PMC article.
-
SHP2 inhibition displays efficacy as a monotherapy and in combination with JAK2 inhibition in preclinical models of myeloproliferative neoplasms.Am J Hematol. 2024 Jun;99(6):1040-1055. doi: 10.1002/ajh.27282. Epub 2024 Mar 5. Am J Hematol. 2024. PMID: 38440831 Free PMC article.
-
DeepPath: Overcoming data scarcity for protein transition pathway prediction using physics-based deep learning.bioRxiv [Preprint]. 2025 Mar 2:2025.02.27.640693. doi: 10.1101/2025.02.27.640693. bioRxiv. 2025. PMID: 40060558 Free PMC article. Preprint.
References
REFERENCES
-
- Adeniji, E. A., Olotu, F. A., & Soliman, M. E. S. (2019). Exploring the lapse in druggability: Sequence analysis, structural dynamics and binding site characterization of K-RasG12C variant, a feasible oncotherapeutics target. Anti-Cancer Agents in Medicinal Chemistry, 18(11), 1540-1550. https://doi.org/10.2174/1871520618666180718110231
-
- Agazie, Y. M., & Hayman, M. J. (2003). Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Molecular and Cellular Biology, 23(21), 7875-7886. https://doi.org/10.1128/mcb.23.21.7875-7886.2003
-
- Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J., & Mustelin, T. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117(6), 699-711. https://doi.org/10.1016/j.cell.2004.05.018
-
- Astl, L., Tse, A., & Verkhivker, G. M. (2019). Interrogating regulatory mechanisms in signaling proteins by allosteric inhibitors and activators: a dynamic view through the lens of residue interaction networks. Advances in Experimental Medicine and Biology, 1163, 187-223. https://doi.org/10.1007/978-981-13-8719-7_9
-
- Bard-Chapeau, E. A., Li, S., Ding, J., Zhang, S. S., Zhu, H. H., Princen, F., Fang, D. D., Han, T., Bailly-Maitre, B., Poli, V., Varki, N. M., Wang, H., & Feng, G.-S. (2011). Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell, 19(5), 629-639. https://doi.org/10.1016/j.ccr.2011.03.023
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous