Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 1;88(17):12821-12825.
doi: 10.1021/acs.joc.3c01089. Epub 2023 Aug 17.

An NHC-Catalyzed Desulfonylative Smiles Rearrangement of Pyrrole and Indole Carboxaldehydes

Affiliations

An NHC-Catalyzed Desulfonylative Smiles Rearrangement of Pyrrole and Indole Carboxaldehydes

Caitlin Swaby et al. J Org Chem. .

Abstract

The use of catalysis methods to enable Smiles rearrangement opens up new substrate classes for arylation under mild conditions. Here, we describe an N-heterocyclic carbene (NHC) catalysis system that accesses indole and pyrrole aldehyde substrates in a desulfonylative Smiles process. The reaction proceeds under mild, transition-metal-free conditions and captures acyl anion reactivity for the synthesis of a diverse array of 2-aroyl indoles and pyrroles from readily available sulfonamide starting materials.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Smiles Rearrangements
Scheme 2
Scheme 2. Substrate Scope
0.1 mmol scale.
Scheme 3
Scheme 3. Pyrrole Smiles–Truce Optimization
0.1 mmol scale.
Scheme 4
Scheme 4. Product Derivatization
Reaction conditions: (a) 0.1 mmol scale, NBS (1.2 equiv), DMF (0.1 M), rt 3 h; (b) 0.1 mmol scale, NaBH4 (3 equiv), MeOH (0.1 M), 0 °C, 16 h; (c) 0.1 mmol scale, MeI (2 equiv), K2CO3 (2.5 equiv), DMF (0.1 M), rt, 16 h; (d) 0.1 mmol scale, Zn (4.2 equiv), AcOH, EtOH:H2O (3 mL, 1:2 EtOH:H2O), 80 °C, 3 h; (e) 0.1 mmol scale, Cs2CO3 (2 equiv), DMF (0.1 M), substrate 4e, 70 °C, 16 h.
Scheme 5
Scheme 5. Crossover Experiment
0.1 mmol scale, standard conditions, NMR yields.
Scheme 6
Scheme 6. Mechanistic Pathway

References

    1. Wales S. M.; Saunthwal R. K.; Clayden J. C(Sp3)-Arylation by Conformationally Accelerated Intramolecular Nucleophilic Aromatic Substitution (SNAr). Acc. Chem. Res. 2022, 55, 1731–1747. 10.1021/acs.accounts.2c00184. - DOI - PMC - PubMed
    2. Huynh M.; De Abreu M.; Belmont P.; Brachet E. Spotlight on Photoinduced Aryl Migration Reactions. Chem.—Eur. J. 2021, 27, 3581–3607. 10.1002/chem.202003507. - DOI - PubMed
    3. Whalley D. M.; Greaney M. F. Recent Advances in The Smiles Rearrangement: New Opportunities for Arylation. Synthesis 2022, 54, 1908–1918. 10.1055/a-1710-6289. - DOI
    1. Selected recent examples:

    2. Saunthwal R. K.; Schwarz M.; Mallick R. K.; Terry-Wright W.; Clayden J. Enantioselective Intramolecular A-Arylation of Benzylamine Derivatives: Synthesis of a Precursor to Levocetirizine. Angew. Chem., Int. Ed. 2023, 62, e20221675810.1002/anie.202216758. - DOI - PubMed
    3. Zhen G.; Zeng G.; Jiang K.; Wang F.; Cao X.; Yin B. Visible-Light-Induced Diradical-Mediated Ipso-Cyclization towards Double Dearomative [2 + 2]-Cycloaddition or Smiles-Type Rearrangement. Chem.—Eur. J. 2023, 29, e20220321710.1002/chem.202203217. - DOI - PubMed
    4. Lemmerer M.; Zhang H.; Fernandes A. J.; Fischer T.; Mießkes M.; Xiao Y.; Maulide N. Synthesis of α-Aryl Acrylamides via Lewis-Base-Mediated Aryl/Hydrogen Exchange. Angew. Chem. Int. Ed 2022, 61, e20220747510.1002/anie.202207475. - DOI - PMC - PubMed
    5. Allen A. R.; Poon J.-F.; McAtee R. C.; Watson N. B.; Pratt D. A.; Stephenson C. R. J. Mechanism of Visible Light-Mediated Alkene Aminoarylation with Arylsulfonylacetamides. ACS Catal. 2022, 12, 8511–8526. 10.1021/acscatal.2c02577. - DOI - PMC - PubMed
    6. Huang J.; Liu F.; Zeng L.-H.; Li S.; Chen Z.; Wu J. Accessing Chiral Sulfones Bearing Quaternary Carbon Stereocenters via Photoinduced Radical Sulfur Dioxide Insertion and Truce–Smiles Rearrangement. Nat. Commun. 2022, 13, 7081.10.1038/s41467-022-34836-y. - DOI - PMC - PubMed
    7. Chen X.; Wang Q.; Zhang Z.; Niu Z.-J.; Shi W.-Y.; Gong X.-P.; Jiao R.-Q.; Gao M.-H.; Liu X.-Y.; Liang Y.-M. Copper-Catalyzed Hydrogen Atom Transfer and Aryl Migration Strategy for the Arylalkylation of Activated Alkenes. Org. Lett. 2022, 24, 4338–4343. 10.1021/acs.orglett.2c01427. - DOI - PubMed
    8. Noten E. A.; McAtee R. C.; Stephenson C. R. J. Catalytic Intramolecular Aminoarylation of Unactivated Alkenes with Aryl Sulfonamides. Chem. Sci. 2022, 13, 6942–6949. 10.1039/D2SC01228F. - DOI - PMC - PubMed
    9. Radhoff N.; Studer A. 1,4-Aryl Migration in Ketene-Derived Enolates by a Polar-Radical-Crossover Cascade. Nat. Commun. 2022, 13, 3083.10.1038/s41467-022-30817-3. - DOI - PMC - PubMed
    10. Shi Z.; Li Y.; Li N.; Wang W.; Lu H.; Yan H.; Yuan Y.; Zhu J.; Ye K. Electrochemical Migratory Cyclization of N-Acylsulfonamides. Angew. Chem., Int. Ed. 2022, 61, e20220605810.1002/anie.202206058. - DOI - PubMed
    11. Horst B.; Verdoorn D. S.; Hennig S.; van der Heijden G.; Ruijter E. Enantioselective Total Synthesis of (−)-Limaspermidine and (−)-Kopsinine by a Nitroaryl Transfer Cascade Strategy. Angew. Chem., Int. Ed. 2022, 61, e20221059210.1002/anie.202210592. - DOI - PMC - PubMed
    12. Abe M.; Nitta S.; Miura E.; Kimachi T.; Inamoto K. Nitrile Synthesis via Desulfonylative–Smiles Rearrangement. J. Org. Chem. 2022, 87, 4460–4467. 10.1021/acs.joc.1c03011. - DOI - PubMed
    13. Cheibas C.; Fincias N.; Casaretto N.; Garrec J.; El Kaïm L. Passerini–Smiles Reaction of A-Ketophosphonates: Platform for Phospha-Brook/Smiles Embedded Cascades. Angew. Chem., Int. Ed. 2022, 61, e20211624910.1002/anie.202116249. - DOI - PubMed
    14. Sephton T.; Large J. M.; Butterworth S.; Greaney M. F. Diarylamine Synthesis via Desulfinylative Smiles Rearrangement. Org. Lett. 2022, 24, 1132–1135. 10.1021/acs.orglett.1c04122. - DOI - PMC - PubMed
    15. Hervieu C.; Kirillova M. S.; Suárez T.; Müller M.; Merino E.; Nevado C. Asymmetric, visible light-mediated radical sulfinyl-Smiles rearrangement to access all-carbon quaternary stereocentres. Nat. Chem. 2021, 13, 327–334. 10.1038/s41557-021-00668-4. - DOI - PubMed
    16. Kang L.; Wang F.; Zhang J.; Yang H.; Xia C.; Qian J.; Jiang G. High Chemo-/Stereoselectivity for Synthesis of Polysubstituted Monofluorinated Pyrimidyl Enol Ether Derivatives. Org. Lett. 2021, 23, 1669–1674. 10.1021/acs.orglett.1c00092. - DOI - PubMed
    17. Chen F.; Shao Y.; Li M.; Yang C.; Su S. J.; Jiang H.; Ke Z.; Zeng W. Photocatalyzed cycloaromatization of vinylsilanes with arylsulfonylazides. Nat. Commun. 2021, 12, 3304.10.1038/s41467-021-23326-2. - DOI - PMC - PubMed
    18. Radhoff N.; Studer A. Functionalization of α-C(sp3)–H Bonds in Amides Using Radical Translocating Arylating Group. Angew. Chem., Int. Ed. 2021, 60, 3561–3565. 10.1002/anie.202013275. - DOI - PMC - PubMed
    19. Gillaizeau-Simonian N.; Barde E.; Guérinot A.; Cossy J. Cobalt-Catalyzed 1,4-Aryl Migration/Desulfonylation Cascade: Synthesis of α-Aryl Amides. Chem.—Eur. J. 2021, 27, 4004–4008. 10.1002/chem.202005129. - DOI - PubMed
    20. Wang Z. S.; Chen Y. B.; Zhang H. W.; Sun Z.; Zhu C.; Ye L. W. Ynamide Smiles Rearrangement Triggered by Visible-Light-Mediated Regioselective Ketyl–Ynamide Coupling: Rapid Access to Functionalized Indoles and Isoquinolines. J. Am. Chem. Soc. 2020, 142, 3636–3644. 10.1021/jacs.9b13975. - DOI - PubMed
    21. Yan J.; Cheo H. W.; Teo W. K.; Shi X.; Wu H.; Idres S. B.; Deng L. W.; Wu J. A Radical Smiles Rearrangement Promoted by Neutral Eosin Y as a Direct Hydrogen Atom Transfer Photocatalyst. J. Am. Chem. Soc. 2020, 142, 11357–11362. 10.1021/jacs.0c02052. - DOI - PubMed
    22. Ruzi R.; Ma J.; Yuan X.; Wang W.; Wang S.; Zhang M.; Dai J.; Xie J.; Zhu C. Deoxygenative Arylation of Carboxylic Acids by Aryl Migration. Chem.—Eur. J. 2019, 25, 12724–12729. 10.1002/chem.201903816. - DOI - PubMed
    1. a) Review:

    2. Allen A. R.; Noten E. A.; Stephenson C. R. J. Aryl Transfer Strategies Mediated by Photoinduced Electron Transfer. Chem. Rev. 2022, 122, 2695–2751. 10.1021/acs.chemrev.1c00388. - DOI - PMC - PubMed
    1. Truce W. E.; Ray W. J. Jr; Norman O. L.; Eickemeyer D. B. Rearrangements of Aryl Sulfones. I. The metalation and rearrangement of mesityl phenyl sulfone. J. Am. Chem. Soc. 1958, 80, 3625–3629. 10.1021/ja01547a038. - DOI
    2. See also:

    3. Naito T.; Dohmori R. Rearrangement of sulfonamide derivatives IV. Rearrangement reaction of the sulfonamide derivatives of pyridine and quinoline 1-oxides. Chem. Pharm. Bull. 1955, 3, 38–42. 10.1248/cpb1953.3.38. - DOI - PubMed
    1. Rabet P. T. G.; Boyd S.; Greaney M. F. Metal-Free Intermolecular Aminoarylation of Alkynes. Angew. Chem., Int. Ed. 2017, 56, 4183–4186. 10.1002/anie.201612445. - DOI - PubMed
    2. Barlow H. L.; Rabet P. T. G.; Durie A.; Evans T.; Greaney M. F. Arylation Using Sulfonamides: Phenylacetamide Synthesis through Tandem Acylation-Smiles Rearrangement. Org. Lett. 2019, 21, 9033–9035. 10.1021/acs.orglett.9b03429. - DOI - PubMed
    3. Johnson S.; Kovacs E.; Greaney M. F. Arylation and alkenylation of activated alkyl halides using sulfonamides. Chem. Commun. 2020, 56, 3222–3224. 10.1039/D0CC00220H. - DOI - PubMed