Regulation on copper-tolerance in Citrus sinensis seedlings by boron addition: Insights from root exudates, related metabolism, and gene expression
- PMID: 37591167
- DOI: 10.1016/j.jhazmat.2023.132277
Regulation on copper-tolerance in Citrus sinensis seedlings by boron addition: Insights from root exudates, related metabolism, and gene expression
Abstract
Boron (B) can alleviate Citrus copper (Cu)-toxicity. However, the underlying mechanism by which B mitigates Cu-toxicity is unclear. 'Xuegan' (Citrus sinensis) seedlings were exposed to 0.5 (control) or 350 (Cu-toxicity) µM Cu and 2.5 or 25 µM B for 24 weeks. Thereafter, we investigated the secretion of low molecular weight compounds [LMWCs; citrate, malate, total soluble sugars (TSS), total phenolics (TP), and total free amino acids (TFAA)] by excised roots and their concentrations in roots and leaves, as well as related enzyme gene expression and activities in roots and leaves. Cu-stress stimulated root release of malate and TFAA, which might contribute to citrus Cu-tolerance. However, B-mediated-mitigation of Cu-stress could not be explained in this way, since B addition failed to further stimulate malate and TFAA secretion. Indeed, B addition decreased Cu-stimulated-secretion of malate. Further analysis suggested that Cu-induced-exudation of malate and TFAA was not regulated by their levels in roots. By contrast, B addition increased malate, citrate, and TFAA concentrations in Cu-toxic roots. Cu-toxicity increased TP concentration in 25 μM B-treated leaves, but not in 2.5 μM B-treated leaves. Our findings suggested that the internal detoxification of Cu by LMWCs played a role in B-mediated-alleviation of Cu-toxicity.
Keywords: Boron mitigation; Citrus sinensis; Copper toxicity; Internal detoxification; Root exudates.
Copyright © 2023 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
