Complex Linear Response Functions for a Multiconfigurational Self-Consistent Field Wave Function in a High Performance Computing Environment
- PMID: 37596971
- PMCID: PMC10500980
- DOI: 10.1021/acs.jctc.3c00317
Complex Linear Response Functions for a Multiconfigurational Self-Consistent Field Wave Function in a High Performance Computing Environment
Abstract
We present novel developments for the highly efficient evaluation of complex linear response functions of a multiconfigurational self-consistent field (MCSCF) wave function as implemented in MultiPsi. Specifically, expressions for the direct evaluation of linear response properties at given frequencies using the complex polarization propagator (CPP) approach have been implemented, within both the Tamm-Dancoff approximation (TDA) and the random phase approximation (RPA). Purely real algebra with symmetric and antisymmetric trial vectors in a shared subspace is used wherein the linear response equations are solved. Two bottlenecks of large scale MC-CPP calculations, namely, the memory footprint and computational time, are addressed. The former is addressed by limiting the size of the subspace of trial vectors by using singular value decomposition (SVD) on either orbital or CI subspaces. The latter is addressed using an efficient parallel implementation as well as the strategy of dynamically adding linear response equations at near-convergence to neighboring roots. Furthermore, a novel methodology for decomposing MC-CPP spectra in terms of intuitive orbital excitations in an approximate fashion is presented. The performance of the code is illustrated with several numerical examples, including the X-ray spectrum of a molecule with nearly one hundred atoms. Additionally, for X-ray spectroscopy, the effect of including or excluding the core orbital in the active space on small covalent metal complexes is discussed.
Conflict of interest statement
The authors declare no competing financial interest.
Figures










References
-
- Roos B. O.; Taylor P. R.; Sigbahn P. E. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 1980, 48, 157–173. 10.1016/0301-0104(80)80045-0. - DOI
-
- Andersson K.; Malmqvist P.-Å.; Roos B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 1992, 96, 1218–1226. 10.1063/1.462209. - DOI
-
- Angeli C.; Cimiraglia R.; Evangelisti S.; Leininger T.; Malrieu J.-P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001, 114, 10252–10264. 10.1063/1.1361246. - DOI
-
- Persico M.; Granucci G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 2014, 133, 1526.10.1007/s00214-014-1526-1. - DOI
LinkOut - more resources
Full Text Sources