Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 May 25;573(2):394-402.
doi: 10.1016/0005-2760(79)90072-9.

Stimulation of phosphatidic acid production in platelets precedes the formation of arachidonate and parallels the release of serotonin

Stimulation of phosphatidic acid production in platelets precedes the formation of arachidonate and parallels the release of serotonin

E G Lapetina et al. Biochim Biophys Acta. .

Abstract

Thrombin rapidly induces the formation of labeled phosphatidic acid from platelets prelabeled with [17C]arachidonate or 32PO34- and specifically decreases by 50--75% the content of phosphatidylinositol. Ionophore A23187 also stimulates phosphatidate labeling, but less effectively than thrombin. This effect on phosphatidic acid is blocked by increasing the levels of cyclic AMP by preincubation with dibutyryl cyclic AMP, cyclic AMP-phosphodiesterase inhibitors or prostacyclin. Indomethacin and eicosatetraynoic acid do not alter the production of phosphatidate, indicating independence from cyclooxygenase or lipoxygenase products. Increased turnover of [14C]- or [32P]phosphatidate occurs within 2--5 s after platelet activation by thrombin and is observed before endogenous, 14C-labeled arachidonate can be detected. The rate of phosphatidate formation parallels the induced rate of serotonin release. Release of [3H]serotonin is not affected by eicosatetraynoic acid. Phosphatidate production reflects the generation of diacylglycerol by C-type phospholipase degradation of phosphatidylinositol. Diacylglycerol and phosphatidic acid may participate in the membrane modification related to the early changes in platelet shape, release reactions or aggregation which occur on stimulation.

PubMed Disclaimer

LinkOut - more resources