Joint analysis of GWAS and multi-omics QTL summary statistics reveals a large fraction of GWAS signals shared with molecular phenotypes
- PMID: 37601976
- PMCID: PMC10435383
- DOI: 10.1016/j.xgen.2023.100344
Joint analysis of GWAS and multi-omics QTL summary statistics reveals a large fraction of GWAS signals shared with molecular phenotypes
Abstract
Molecular quantitative trait loci (xQTLs) are often harnessed to prioritize genes or functional elements underpinning variant-trait associations identified from genome-wide association studies (GWASs). Here, we introduce OPERA, a method that jointly analyzes GWAS and multi-omics xQTL summary statistics to enhance the identification of molecular phenotypes associated with complex traits through shared causal variants. Applying OPERA to summary-level GWAS data for 50 complex traits (n = 20,833-766,345) and xQTL data from seven omics layers (n = 100-31,684) reveals that 50% of the GWAS signals are shared with at least one molecular phenotype. GWAS signals shared with multiple molecular phenotypes, such as those at the MSMB locus for prostate cancer, are particularly informative for understanding the genetic regulatory mechanisms underlying complex traits. Future studies with more molecular phenotypes, measured considering spatiotemporal effects in larger samples, are required to obtain a more saturated map linking molecular intermediates to GWAS signals.
Keywords: Bayesian analysis; complex trait; gene discovery; genetic regulatory mechanisms; genome-wide association study; joint analysis; molecular phenotype; molecular quantitative trait locus; multi-omics; summary statistics.
© 2023 The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
COLOCdb: a comprehensive resource for multi-model colocalization of complex traits.Nucleic Acids Res. 2024 Jan 5;52(D1):D871-D881. doi: 10.1093/nar/gkad939. Nucleic Acids Res. 2024. PMID: 37941154 Free PMC article.
-
Integrative multi-omics QTL colocalization maps regulatory architecture in aging human brain.medRxiv [Preprint]. 2025 May 6:2025.04.17.25326042. doi: 10.1101/2025.04.17.25326042. medRxiv. 2025. PMID: 40385406 Free PMC article. Preprint.
-
Molecular Quantitative Trait Locus Mapping in Human Complex Diseases.Curr Protoc. 2022 May;2(5):e426. doi: 10.1002/cpz1.426. Curr Protoc. 2022. PMID: 35587224 Free PMC article.
-
From genetic associations to genes: methods, applications, and challenges.Trends Genet. 2024 Aug;40(8):642-667. doi: 10.1016/j.tig.2024.04.008. Epub 2024 May 11. Trends Genet. 2024. PMID: 38734482 Review.
-
Leveraging molecular quantitative trait loci to comprehend complex diseases/traits from the omics perspective.Hum Genet. 2023 Nov;142(11):1543-1560. doi: 10.1007/s00439-023-02602-9. Epub 2023 Sep 27. Hum Genet. 2023. PMID: 37755483 Review.
Cited by
-
Epigenomic insights into common human disease pathology.Cell Mol Life Sci. 2024 Apr 11;81(1):178. doi: 10.1007/s00018-024-05206-2. Cell Mol Life Sci. 2024. PMID: 38602535 Free PMC article. Review.
-
The goldmine of GWAS summary statistics: a systematic review of methods and tools.BioData Min. 2024 Sep 5;17(1):31. doi: 10.1186/s13040-024-00385-x. BioData Min. 2024. PMID: 39238044 Free PMC article.
-
The Potential of Genomics and Electronic Health Records to Invigorate Drug Development.Biol Psychiatry. 2024 Apr 15;95(8):715-717. doi: 10.1016/j.biopsych.2024.01.021. Biol Psychiatry. 2024. PMID: 38538168 Free PMC article. No abstract available.
-
Uncovering somatic genetic drivers in prostate cancer through comprehensive genome-wide analysis.Geroscience. 2025 Jun;47(3):5039-5056. doi: 10.1007/s11357-025-01623-8. Epub 2025 Mar 29. Geroscience. 2025. PMID: 40156736 Free PMC article.
-
Chromatin accessibility variation provides insights into missing regulation underlying immune-mediated diseases.bioRxiv [Preprint]. 2025 Jul 3:2024.04.12.589213. doi: 10.1101/2024.04.12.589213. bioRxiv. 2025. PMID: 38659802 Free PMC article. Preprint.
References
-
- Hormozdiari F., Gazal S., van de Geijn B., Finucane H.K., Ju C.J.T., Loh P.R., Schoech A., Reshef Y., Liu X., O'Connor L., et al. Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits. Nat. Genet. 2018;50:1041–1047. doi: 10.1038/s41588-018-0148-2. - DOI - PMC - PubMed
-
- Gusev A., Mancuso N., Won H., Kousi M., Finucane H.K., Reshef Y., Song L., Safi A., Schizophrenia Working Group of the Psychiatric Genomics Consortium. McCarroll S., et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 2018;50:538–548. doi: 10.1038/s41588-018-0092-1. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources