The dynamic role of cohesin in maintaining human genome architecture
- PMID: 37603403
- DOI: 10.1002/bies.202200240
The dynamic role of cohesin in maintaining human genome architecture
Abstract
Recent advances in genomic and imaging techniques have revealed the complex manner of organizing billions of base pairs of DNA necessary for maintaining their functionality and ensuring the proper expression of genetic information. The SMC proteins and cohesin complex primarily contribute to forming higher-order chromatin structures, such as chromosomal territories, compartments, topologically associating domains (TADs) and chromatin loops anchored by CCCTC-binding factor (CTCF) protein or other genome organizers. Cohesin plays a fundamental role in chromatin organization, gene expression and regulation. This review aims to describe the current understanding of the dynamic nature of the cohesin-DNA complex and its dependence on cohesin for genome maintenance. We discuss the current 3C technique and numerous bioinformatics pipelines used to comprehend structural genomics and epigenetics focusing on the analysis of Cohesin-centred interactions. We also incorporate our present comprehension of Loop Extrusion (LE) and insights from stochastic modelling.
Keywords: chromatin 3D organization; cohesin; cohesin complex; cohesin dynamics; loop extrusion model.
© 2023 Wiley Periodicals LLC.
Similar articles
-
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.EMBO J. 2017 Dec 15;36(24):3573-3599. doi: 10.15252/embj.201798004. Epub 2017 Dec 7. EMBO J. 2017. PMID: 29217591 Free PMC article.
-
Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders.Genome Biol. 2016 Aug 31;17(1):182. doi: 10.1186/s13059-016-1043-8. Genome Biol. 2016. PMID: 27582050 Free PMC article.
-
Cohesin and CTCF do not assemble TADs in Xenopus sperm and male pronuclei.Genome Res. 2023 Dec 27;33(12):2094-2107. doi: 10.1101/gr.277865.123. Genome Res. 2023. PMID: 38129077 Free PMC article.
-
Genome folding by cohesin.Curr Opin Genet Dev. 2025 Apr;91:102310. doi: 10.1016/j.gde.2025.102310. Epub 2025 Jan 18. Curr Opin Genet Dev. 2025. PMID: 39827577 Review.
-
CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism.Nucleus. 2020 Dec;11(1):132-148. doi: 10.1080/19491034.2020.1782024. Nucleus. 2020. PMID: 32631111 Free PMC article. Review.
Cited by
-
The MCM2-7 Complex: Roles beyond DNA Unwinding.Biology (Basel). 2024 Apr 13;13(4):258. doi: 10.3390/biology13040258. Biology (Basel). 2024. PMID: 38666870 Free PMC article. Review.
-
Improved cohesin HiChIP protocol and bioinformatic analysis for robust detection of chromatin loops and stripes.Commun Biol. 2025 Mar 14;8(1):437. doi: 10.1038/s42003-025-07847-w. Commun Biol. 2025. PMID: 40082674 Free PMC article.
-
Multiscale molecular modeling of chromatin with MultiMM: From nucleosomes to the whole genome.Comput Struct Biotechnol J. 2024 Oct 2;23:3537-3548. doi: 10.1016/j.csbj.2024.09.025. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 39435339 Free PMC article.
-
Is Enhancer Function Driven by Protein-Protein Interactions? From Bacteria to Leukemia.Bioessays. 2025 Jun;47(6):e70006. doi: 10.1002/bies.70006. Epub 2025 Apr 8. Bioessays. 2025. PMID: 40195782 Free PMC article. Review.
-
The challenge of chromatin model comparison and validation: A project from the first international 4D Nucleome Hackathon.PLoS Comput Biol. 2025 Aug 19;21(8):e1013358. doi: 10.1371/journal.pcbi.1013358. eCollection 2025 Aug. PLoS Comput Biol. 2025. PMID: 40828848 Free PMC article.
References
REFERENCES
-
- Miescher, J. F. (1874). Die Spermatozoen einiger Wirbelthiere: ein Beitrag zur Histochemie.
-
- Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171(4356), 737-738.
-
- Bloomfield, V. A. (1996). DNA condensation. Current Opinion in Structural Biology, 6(3), 334-341. https://doi.org/10.1016/s0959-440x(96)80052-2
-
- Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., & Aiden, E. L. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159(7), 1665-1680. https://doi.org/10.1016/j.cell.2014.11.021
-
- Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., & Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485(7398), 376-380. https://doi.org/10.1038/nature11082
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources