A tutorial on automatic post-stratification and weighting in conventional and regression-based norming of psychometric tests
- PMID: 37604962
- PMCID: PMC11289220
- DOI: 10.3758/s13428-023-02207-0
A tutorial on automatic post-stratification and weighting in conventional and regression-based norming of psychometric tests
Abstract
Norm scores are an essential source of information in individual diagnostics. Given the scope of the decisions this information may entail, establishing high-quality, representative norms is of tremendous importance in test construction. Representativeness is difficult to establish, though, especially with limited resources and when multiple stratification variables and their joint probabilities come into play. Sample stratification requires knowing which stratum an individual belongs to prior to data collection, but the required variables for the individual's classification, such as socio-economic status or demographic characteristics, are often collected within the survey or test data. Therefore, post-stratification techniques, like iterative proportional fitting (= raking), aim at simulating representativeness of normative samples and can thus enhance the overall quality of the norm scores. This tutorial describes the application of raking to normative samples, the calculation of weights, the application of these weights in percentile estimation, and the retrieval of continuous, regression-based norm models with the cNORM package on the R platform. We demonstrate this procedure using a large, non-representative dataset of vocabulary development in childhood and adolescence (N = 4542), using sex and ethnical background as stratification variables.
Keywords: Iterative proportional fitting; Post-stratification; Raking; Regression-based norming; Test construction.
© 2023. The Author(s).
Conflict of interest statement
The R package cNORM is freely available under an AGPL-3 license. The authors receive no royalties for the software and have no other financial interests in the described procedure. We would like to thank WPS for funding the further development of cNORM and the Faculty of Human Sciences of the Julius-Maximilians-University of Würzburg for providing publication funding.
Figures
References
-
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association.
-
- Battaglia, M. P., Hoaglin, D. C., & Frankel, M. R. (2009). Practical considerations in raking survey data. Survey Practice,2(5), 2953. 10.29115/SP-2009-001910.29115/SP-2009-0019 - DOI
-
- Bellman, R. (1957). Dynamic programming. Princeton University Press.
-
- Cole, T. J. (1988). Fitting smoothed centile curves to reference data. Journal of the Royal Statistical Society: Series A (Statistics in Society),151(3), 385–406.10.2307/2982992 - DOI
-
- Dienes, P. (1957). The Taylor series: An introduction to the theory of functions of a complex variable. Dover Publications.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
