Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov;170(3):401-418.
doi: 10.1111/imm.13679. Epub 2023 Aug 21.

A robust platform for integrative spatial multi-omics analysis to map immune responses to SARS-CoV-2 infection in lung tissues

Affiliations
Free article

A robust platform for integrative spatial multi-omics analysis to map immune responses to SARS-CoV-2 infection in lung tissues

Xiao Tan et al. Immunology. 2023 Nov.
Free article

Abstract

The SARS-CoV-2 (COVID-19) virus has caused a devastating global pandemic of respiratory illness. To understand viral pathogenesis, methods are available for studying dissociated cells in blood, nasal samples, bronchoalveolar lavage fluid and similar, but a robust platform for deep tissue characterization of molecular and cellular responses to virus infection in the lungs is still lacking. We developed an innovative spatial multi-omics platform to investigate COVID-19-infected lung tissues. Five tissue-profiling technologies were combined by a novel computational mapping methodology to comprehensively characterize and compare the transcriptome and targeted proteome of virus infected and uninfected tissues. By integrating spatial transcriptomics data (Visium, GeoMx and RNAScope) and proteomics data (CODEX and PhenoImager HT) at different cellular resolutions across lung tissues, we found strong evidence for macrophage infiltration and defined the broader microenvironment surrounding these cells. By comparing infected and uninfected samples, we found an increase in cytokine signalling and interferon responses at different sites in the lung and showed spatial heterogeneity in the expression level of these pathways. These data demonstrate that integrative spatial multi-omics platforms can be broadly applied to gain a deeper understanding of viral effects on cellular environments at the site of infection and to increase our understanding of the impact of SARS-CoV-2 on the lungs.

Keywords: COVID-19 infection; spatial integration; spatial proteomics; spatial transcriptomics.

PubMed Disclaimer

References

REFERENCES

    1. Milross L, Majo J, Cooper N, Kaye PM, Bayraktar O, Filby A, et al. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respir Med. 2022;10(1):95-106.
    1. Eyre DW, Taylor D, Purver M, Chapman D, Fowler T, Pouwels KB, et al. Effect of Covid-19 vaccination on transmission of alpha and Delta variants. N Engl J Med. 2022;386(8):744-756.
    1. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-615.
    1. McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020;202(6):812-821.
    1. Biancolella M, Colona VL, Mehrian-Shai R, Watt JL, Luzzatto L, Novelli G, et al. COVID-19 2022 update: transition of the pandemic to the endemic phase. Hum Genomics. 2022;16(1):19.

LinkOut - more resources