Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 31;15(34):4311-4320.
doi: 10.1039/d3ay01046e.

Enhancing metabolite coverage in MALDI-MSI using laser post-ionisation (MALDI-2)

Affiliations

Enhancing metabolite coverage in MALDI-MSI using laser post-ionisation (MALDI-2)

J C McKinnon et al. Anal Methods. .

Abstract

Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) of metabolites can reveal how metabolism is altered throughout heterogeneous tissues. Here negative ion mode MALDI-MSI has been coupled with laser post-ionisation (MALDI-2) and applied to the MSI of low molecular weight (LMW) metabolites (<m/z 600) to investigate the benefits MALDI-2 offers for spatial metabolomics in terms of metabolite coverage and sensitivity. When applied to mouse kidney tissue MALDI-2 provided almost double the number of on-tissue specific mass features compared to conventional MALDI. MALDI-2 also resulted in not only the increased detection sensitivity for multiple metabolite species but also permitted the imaging of LMW metabolites (e.g. uridine) that were not detected using conventional MALDI-MSI. When compared against ∼140 publically available kidney datasets submitted through the METASPACE analysis platform using the same N-(1-naphthyl) ethylenediamine dihydrochloride (NEDC) matrix, MALDI-2 provided 34 unique metabolite m/z features that were not consistently annotated previously. To further evaluate the usefulness of this MALDI-2 approach to metabolite imaging, MALDI-2 was applied to the imaging of mouse liver tissue containing a metastasised breast cancer at a pixel size of 20 μm. Using a co-localisation analysis, MALDI-2 detected six tumour-specific metabolites that were not detected using conventional MALDI, as well as providing an up to 20-fold increase in signal intensities for many others (e.g., glutamate). This work provides one of the first reports of MALDI-2 applied to metabolite imaging and demonstrates the dramatic improvements in sensitivity and metabolite coverage it provides.

PubMed Disclaimer

Publication types

LinkOut - more resources