Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 1;88(17):12565-12571.
doi: 10.1021/acs.joc.3c01274. Epub 2023 Aug 22.

Multicomponent Synthesis of the SARS-CoV-2 Main Protease Inhibitor Nirmatrelvir

Affiliations

Multicomponent Synthesis of the SARS-CoV-2 Main Protease Inhibitor Nirmatrelvir

H Daniel Preschel et al. J Org Chem. .

Abstract

In the wake of the Covid-19 pandemic, it has become clear that global access to efficacious antiviral drugs will be critical to combat future outbreaks of SARS-CoV-2 or related viruses. The orally available SARS-CoV-2 main protease inhibitor nirmatrelvir has proven an effective treatment option for Covid-19, especially in compromised patients. We report a new synthesis of nirmatrelvir featuring a highly enantioselective biocatalytic desymmetrization (>99% ee) and a highly diastereoselective multicomponent reaction (>25:1 dr) as the key steps. Our route avoids the use of transition metals and peptide coupling reagents, resulting in an overall highly efficient and atom-economic process.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Retrosynthesis of Nirmatrelvir and Biocatalytic Synthesis of Imine 3
Scheme 2
Scheme 2. Synthesis of Isocyanide 4a
Scheme 3
Scheme 3. Synthesis of Nirmatrelvir
Scheme 4
Scheme 4. Streamlined Route to Nirmatrelvir

References

    1. For a recent perspective, see:

    2. Cannalire R.; Cerchia C.; Beccari A. R.; Di Leva F. S.; Summa V. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. J. Med. Chem. 2022, 65, 2716–2746. 10.1021/acs.jmedchem.0c01140. - DOI - PMC - PubMed
    1. See, for example:

    2. Zhang L.; Lin D.; Sun X.; Curth U.; Drosten C.; Sauerhering L.; Becker S.; Rox K.; Hilgenfeld R. Crystal Structure of SARS-CoV-2 Main Protease Provides a Basis for Design of Improved α-Ketoamide Inhibitors. Science 2020, 368, 409–412. 10.1126/science.abb3405. - DOI - PMC - PubMed
    3. Jin Z.; Du X.; Xu Y.; Deng Y.; Liu M.; Zhao Y.; Zhang B.; Li X.; Zhang L.; Peng C.; Duan Y.; Yu J.; Wang L.; Yang K.; Liu F.; Jiang R.; Yang X.; You T.; Liu X.; Yang X.; Bai F.; Liu H.; Liu X.; Guddat L. W.; Xu W.; Xiao G.; Qin C.; Shi Z.; Jiang H.; Rao Z.; Yang H. Structure of Mpro from SARS-CoV-2 and Discovery of Its Inhibitors. Nature 2020, 582, 289–293. 10.1038/s41586-020-2223-y. - DOI - PubMed
    4. Dai W.; Zhang B.; Jiang X. M.; Su H.; Li J.; Zhao Y.; Xie X.; Jin Z.; Peng J.; Liu F.; Li C.; Li Y.; Bai F.; Wang H.; Cheng X.; Cen X.; Hu S.; Yang X.; Wang J.; Liu X.; Xiao G.; Jiang H.; Rao Z.; Zhang L. K.; Xu Y.; Yang H.; Liu H. Structure-Based Design of Antiviral Drug Candidates Targeting the SARS-CoV-2 Main Protease. Science 2020, 368, 1331–1335. 10.1126/science.abb4489. - DOI - PMC - PubMed
    5. Qiao J.; Li Y.-S.; Zeng R.; Liu F.-L.; Luo R.-H.; Huang C.; Wang Y.-F.; Zhang J.; Quan B.; Shen C.; Mao X.; Liu X.; Sun W.; Yang W.; Ni X.; Wang K.; Xu L.; Duan Z.-L.; Zou Q.-C.; Zhang H.-L.; Qu W.; Long Y.-H.-P.; Li M.-H.; Yang R.-C.; Liu X.; You J.; Zhou Y.; Yao R.; Li W.-P.; Liu J.-M.; Chen P.; Liu Y.; Lin G.-F.; Yang X.; Zou J.; Li L.; Hu Y.; Lu G.-W.; Li W.-M.; Wei Y.-Q.; Zheng Y.-T.; Lei J.; Yang S. SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model. Science 2021, 371, 1374–1378. 10.1126/science.abf1611. - DOI - PMC - PubMed
    1. Owen D. R.; Allerton C. M. N.; Anderson A. S.; Aschenbrenner L.; Avery M.; Berritt S.; Boras B.; Cardin R. D.; Carlo A.; Coffman K. J.; Dantonio A.; Di L.; Eng H.; Ferre R.; Gajiwala K. S.; Gibson S. A.; Greasley S. E.; Hurst B. L.; Kadar E. P.; Kalgutkar A. S.; Lee J. C.; Lee J.; Liu W.; Mason S. W.; Noell S.; Novak J. J.; Obach R. S.; Ogilvie K.; Patel C.; Pettersson M.; Rai D. K.; Reese M. R.; Sammons M. F.; Sathish J. G.; Singh R. S. P.; Steppan C. M.; Stewart A. E.; Tuttle J. B.; Updyke L.; Verhoest P. R.; Wei L.; Yang Q.; Zhu Y. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. 10.1126/science.abl4784. - DOI - PubMed
    1. Köhler V.; Bailey K. R.; Znabet A.; Raftery J.; Helliwell M.; Turner N. J. Enantioselective Biocatalytic Oxidative Desymmetri-zation of Substituted Pyrrolidines. Angew. Chem., Int. Ed. 2010, 49, 2182–2184. 10.1002/anie.200906655. - DOI - PubMed
    1. For a review, see:

    2. Nazeri M. T.; Farhid H.; Mohammadian R.; Shaabani A. Cyclic Imines in Ugi and Ugi-Type Reactions. ACS Comb. Sci. 2020, 22, 361–400. 10.1021/acscombsci.0c00046. - DOI - PubMed

Publication types