Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Aug;260(5):498-513.
doi: 10.1002/path.6155. Epub 2023 Aug 23.

Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer

Jeppe Thagaard  1   2 Glenn Broeckx  3   4 David B Page  5 Chowdhury Arif Jahangir  6 Sara Verbandt  7 Zuzana Kos  8 Rajarsi Gupta  9 Reena Khiroya  10 Khalid Abduljabbar  11 Gabriela Acosta Haab  12 Balazs Acs  13   14 Guray Akturk  15 Jonas S Almeida  16 Isabel Alvarado-Cabrero  17 Mohamed Amgad  18 Farid Azmoudeh-Ardalan  19 Sunil Badve  20 Nurkhairul Bariyah Baharun  21 Eva Balslev  22 Enrique R Bellolio  23 Vydehi Bheemaraju  24 Kim Rm Blenman  25   26 Luciana Botinelly Mendonça Fujimoto  27 Najat Bouchmaa  28 Octavio Burgues  29 Alexandros Chardas  30 Maggie Chon U Cheang  31 Francesco Ciompi  32 Lee Ad Cooper  33 An Coosemans  34 Germán Corredor  35 Anders B Dahl  1 Flavio Luis Dantas Portela  36 Frederik Deman  3 Sandra Demaria  37   38 Johan Doré Hansen  2 Sarah N Dudgeon  39 Thomas Ebstrup  2 Mahmoud Elghazawy  40   41 Claudio Fernandez-Martín  42 Stephen B Fox  43 William M Gallagher  6 Jennifer M Giltnane  44 Sacha Gnjatic  45 Paula I Gonzalez-Ericsson  46 Anita Grigoriadis  47   48 Niels Halama  49 Matthew G Hanna  50 Aparna Harbhajanka  51 Steven N Hart  52 Johan Hartman  13   14 Søren Hauberg  1 Stephen Hewitt  53 Akira I Hida  54 Hugo M Horlings  55 Zaheed Husain  56 Evangelos Hytopoulos  57 Sheeba Irshad  58 Emiel Am Janssen  59   60 Mohamed Kahila  61 Tatsuki R Kataoka  62 Kosuke Kawaguchi  63 Durga Kharidehal  24 Andrey I Khramtsov  64 Umay Kiraz  59   60 Pawan Kirtani  65 Liudmila L Kodach  66 Konstanty Korski  67 Anikó Kovács  68   69 Anne-Vibeke Laenkholm  70   71 Corinna Lang-Schwarz  72 Denis Larsimont  73 Jochen K Lennerz  74 Marvin Lerousseau  75   76   77 Xiaoxian Li  78 Amy Ly  79 Anant Madabhushi  80 Sai K Maley  81 Vidya Manur Narasimhamurthy  82 Douglas K Marks  83 Elizabeth S McDonald  84 Ravi Mehrotra  85   86 Stefan Michiels  87 Fayyaz Ul Amir Afsar Minhas  88 Shachi Mittal  89 David A Moore  90 Shamim Mushtaq  91 Hussain Nighat  92 Thomas Papathomas  93   94 Frederique Penault-Llorca  95 Rashindrie D Perera  96   97 Christopher J Pinard  98   99   100   101 Juan Carlos Pinto-Cardenas  102 Giancarlo Pruneri  103   104 Lajos Pusztai  105   106 Arman Rahman  6 Nasir Mahmood Rajpoot  107 Bernardo Leon Rapoport  108   109 Tilman T Rau  110 Jorge S Reis-Filho  111 Joana M Ribeiro  112 David Rimm  113   114 Anne Roslind  22 Anne Vincent-Salomon  115 Manuel Salto-Tellez  116   117 Joel Saltz  9 Shahin Sayed  118 Ely Scott  119 Kalliopi P Siziopikou  120 Christos Sotiriou  121   122 Albrecht Stenzinger  123   124 Maher A Sughayer  125 Daniel Sur  126 Susan Fineberg  127   128 Fraser Symmans  129 Sunao Tanaka  130 Timothy Taxter  131 Sabine Tejpar  7 Jonas Teuwen  132 E Aubrey Thompson  133 Trine Tramm  134   135 William T Tran  136 Jeroen van der Laak  137 Paul J van Diest  138   139 Gregory E Verghese  47   48 Giuseppe Viale  140   141 Michael Vieth  72 Noorul Wahab  142 Thomas Walter  75   76   77 Yannick Waumans  143 Hannah Y Wen  50 Wentao Yang  144 Yinyin Yuan  145 Reena Md Zin  146 Sylvia Adams  83   147 John Bartlett  148 Sibylle Loibl  149 Carsten Denkert  150 Peter Savas  97   151 Sherene Loi  97   151 Roberto Salgado  3   97 Elisabeth Specht Stovgaard  22   152
Affiliations
Review

Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer

Jeppe Thagaard et al. J Pathol. 2023 Aug.

Abstract

The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

Keywords: deep learning; digital pathology; guidelines; image analysis; machine learning; pitfalls; prognostic biomarker; triple-negative breast cancer; tumor-infiltrating lymphocytes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Lymphocyte‐dense regions associated with other structures should be excluded as the inflammation is not necessarily an immune response to the tumor. (A) TLS. (B) Lymphocytes surrounding vessels. These areas are reported [24] as possible false‐positive areas in CTA at much higher levels than VTA. Images by Elisabeth Specht Stovgaard from Herlev cohort used in [22].
Figure 2
Figure 2
Examples of discrepant cases from Herlev cohort used in [22]; purple areas: tumor nests, heatmap areas: sTIL regions. (A) A case of high sTIL density at tumor margin compared to central area. As the stroma is scarce inside the tumor, sTIL density is reported to be very high in CTA as mostly the margin contributes to the score. (B) The tumor grows irregularly with small tumor nests between larger invasive tumor areas. In these cases, the CTA includes more stroma than VTA, resulting in a lower sTIL density score (larger denominator) than the manual score.

References

    1. Bates GJ, Fox SB, Han C, et al. Quantification of regulatory T cells enables the identification of high‐risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24: 5373–5380. - PubMed
    1. Wang M, Zhang C, Song Y, et al. Mechanism of immune evasion in breast cancer. Onco Targets Ther 2017; 10: 1561–1573. - PMC - PubMed
    1. Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol 2016; 13: 228–241. - PubMed
    1. Hammerl D, Smid M, Timmermans AM, et al. Breast cancer genomics and immuno‐oncological markers to guide immune therapies. Semin Cancer Biol 2018; 52: 178–188. - PubMed
    1. Hudeček J, Voorwerk L, van Seijen M, et al. Application of a risk‐management framework for integration of stromal tumor‐infiltrating lymphocytes in clinical trials. NPJ Breast Cancer 2020; 6: 15. - PMC - PubMed

Publication types