Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Nov 24:arXiv:2305.09011v6.

The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn)

Hongwei Bran Li  1   2   3 Gian Marco Conte  4 Qingqiao Hu  1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45 Syed Muhammad Anwar  12   13 Florian Kofler  5   2   6   7 Ivan Ezhov  2 Koen van Leemput  9 Marie Piraud  5 Maria Diaz  24 Byrone Cole  24 Evan Calabrese  27   43 Jeff Rudie  43 Felix Meissen  2 Maruf Adewole  11 Anastasia Janas  17 Anahita Fathi Kazerooni  18   14 Dominic LaBella  19 Ahmed W Moawad  22 Keyvan Farahani  23 James Eddy  24 Timothy Bergquist  24 Verena Chung  24 Russell Takeshi Shinohara  14   25 Farouk Dako  26 Walter Wiggins  27 Zachary Reitman  19 Chunhao Wang  19 Xinyang Liu  12   13 Zhifan Jiang  12   13 Ariana Familiar  18 Elaine Johanson  30 Zeke Meier  31 Christos Davatzikos  14   15 John Freymann  32   23 Justin Kirby  32   23 Michel Bilello  14   15 Hassan M Fathallah-Shaykh  33 Roland Wiest  34   35 Jan Kirschke  21 Rivka R Colen  36   37 Aikaterini Kotrotsou  37 Pamela Lamontagne  38 Daniel Marcus  39   40 Mikhail Milchenko  39   40 Arash Nazeri  40 Marc-André Weber  41 Abhishek Mahajan  42 Suyash Mohan  14   15 John Mongan  43 Christopher Hess  43 Soonmee Cha  43 Javier Villanueva-Meyer  43 Errol Colak  44 Priscila Crivellaro  44 Andras Jakab  45 Jake Albrecht  24 Udunna Anazodo  29 Mariam Aboian  17 Thomas Yu  10 Verena Chung  24 Timothy Bergquist  24 James Eddy  24 Jake Albrecht  24 Ujjwal Baid  14   15   16 Spyridon Bakas  14   15   16 Marius George Linguraru  8 Bjoern Menze  1 Juan Eugenio Iglesias  10 Benedikt Wiestler  3
Affiliations

The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn)

Hongwei Bran Li et al. ArXiv. .

Abstract

Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.

Keywords: BraTS; MRI; brain; challenge; image synthesis; machine learning; segmentation; tumor.

PubMed Disclaimer

Figures

Fig.1:
Fig.1:
The details of training, validation, and test sets. During the validation and test stages, for each subject, the segmentation mask corresponding to images is not available, and one of the four modalities will be randomly excluded (‘dropout’). The participants are required to synthesize any missing modalities in the test stage.

References

    1. Wen P. Y., Macdonald D. R., Reardon D. A., Cloughesy T. F., Sorensen A. G., Galanis E., DeGroot J., Wick W., Gilbert M. R., Lassman A. B., et al., “Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group,” Journal of clinical oncology, vol. 28, no. 11, pp. 1963–1972, 2010. - PubMed
    1. Vollmuth P., Foltyn M., Huang R. Y., Galldiks N., Petersen J., Isensee F., van den Bent M. J., Barkhof F., Park J. E., Park Y. W., et al., “Artificial intelligence (ai)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: An international multi-reader study,” Neuro-Oncology, vol. 25, no. 3, pp. 533–543, 2023. - PMC - PubMed
    1. Kamnitsas K., Ledig C., Newcombe V. F., Simpson J. P., Kane A. D., Menon D. K., Rueckert D., and Glocker B., “Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation,” Medical image analysis, vol. 36, pp. 61–78, 2017. - PubMed
    1. Pereira S., Pinto A., Alves V., and Silva C. A., “Brain tumor segmentation using convolutional neural networks in mri images,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1240–1251, 2016. - PubMed
    1. Wang G., Li W., Ourselin S., and Vercauteren T., “Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation,” Frontiers in computational neuroscience, vol. 13, p. 56, 2019. - PMC - PubMed

Publication types